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primary Orbits, and these points become the starting points for the secondary species. Velocities

for the secondary species are initialized as being the sum of the primaries velocity at the initial

point plus some excess energy generated from the dissociation processes. A weighting factor is

associated with each secondary orbit and reflects the fact that the primary species is partialiy

depleted at the point in the orbit where it gives rise to the secondary species and also that the

dissociative branching ratios are properly included for each secondary species.

Additional efforts in the second year were directed to generalization of the SO2 neutral

cloud model for SO 2 escape from Io in order to investigate the spatial distribution of the SO2,

SO, 02, S, and O neutral clouds produced near Io and in the circumplanetary space. This

generalization has resulted in the addition of almost 1000 lines of new code to the numerical

model. The Io model has been improved to include multiple neutral species and their

interconversion into each other. Previously only the destruction of a single neutral species due to

its interaction with the plasma torus was treated, where for a neutral (parent) molecule, the initial

creation source rates for the daughter and granddaughter products were calculated. Now SO2,

SO, 02, S, and O can be simultaneously followed taking into account not only the destruction of

each species by the usual torus interactions and photo processes but also their formation from

more complex molecules. The formation of SO from the dissociation of SO2,02 from the

dissociation of SO2, S from the dissociation of SO2 and SO, and O from the dissociation of SO2,

SO, and 02 are now taken into account. In this way, a pure SO2 Io exospheric source can be

followed as it breaks up into SO, 02, S, and O. The secondary species SO, and 02 can also be

simultaneously followed as they turn into S and O. For each species, the column density and

brightness of various desired emission lines may be calculated on the sky plane of the observer.

In addition to this generalization, the model has been rendered more efficient by some

restructuring. The model is at present, however, not fully completed since we are still awaiting

improved values for the electron impact destruction rates for SO and 02 as well as improved

excitation rates for some important S lines and an SO band.

2.2 SO2 + Production Rate in the Plasma Torus

Although the SO2 neutral cloud model has not been completed because of the lack of

some of the dissociative chemistry rates, the chemistry for the initial dissociation of SO2 is

sufficiently in tack to proceed with some exploratory model calculations. The SO2 neutral cloud

model has therefore first been used to explore the escape of SO2 from Io as one possible source

for the SO2+ ions measured well inside of Io's orbit (L=5.25) near western elongation by the PLS

experiment aboard the Voyager 1 spacecraft during its 1979 flyby of Jupiter (Bagenal 1985).



The spatial distribution and abundanceof SO2 in the plasma toms depend upon the

strength of the SO2 source at Io and its subsequent spacetime lifetime history in plasma toms as

the SO2 cloud moves dynamically away from Io. The various lifetime processes for SO_ in the

plasma toms are summarized in Table 1, where the listed lifetimes are typical values in the hot

plasma torus. The dominant lifetime process for SO2 in the plasma torus is electron impact

dissociation, which has a major branch

and a minor branch

S02 + e _ SO + 0 (1)

S02 + e --+ S + 02. (2)

As discussed by Scherb and Smyth (1993), the lifetime of SO2 in the plasma toms is, however,

highly spacetime dependent because of the oscillation of the plasma toms about the satellite

orbital plane and the presence of System III longitude and east-west asymmetries in the plasma

toms. The lifetime of SO2 in the plasma toms at Io's location is illustrated in Figure 1 and can be

seen to vary by more than an order of magnitude. For Io near western elongation (i.e., an Io

geocentric phase angle of 180°), the SO2 lifetime varies only moderately with System III

longitude and has its minimum value which is smaller than the 0.5 hour contour shown. For Io

near eastern elongation (i.e., an Io geocentric phase angle of 90°), the SO2 lifetime varies

considerably with System III longitude and has its maximum value which is larger than the 6

hour contour shown. This highly spacetime dependent lifetime for SO2 in the plasma toms near

Io causes the local abundance of SO2 in the circumplanetary environment near Io to be highly

spacetime dependent as illustrated by Scherb and Smyth (1993) and will hence cause the

subsequent production of SO2+ near Io to also be highly spacetime dependent.

For a given time history of the 802 cloud abundance near Io, the local abundance of

SO2+ ions in the plasma toms will then depend upon the cumulative spacetime history of the

local SO2+ production rate and the local SO2+ destruction rate. The two primary sources for

production of SO2+ from SO2 are a minor electron impact ionization branch and a charge

exchange reaction with O + ions:

S02 + e _ 802+ + 2e (3)
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S02 + 0 + --_ S02+ + 0 , (4)

wheretherelative ratesandlifetimes in thehot plasmatorusaregiven in Table 1. Preliminary
model calculations for theseSO2+ production rate will be discussedbelow. The SO2+

destructionrate in the plasmatorus is not at presentdetermined,but will hopefully a good
estimatedwill beobtainedin thenearfutureby Dr. D. E. Shemansky.

Model calculationsfor the instantaneousSO2+ production rate when Io is east and west

of Jupiter have been undertaken. The maximum instantaneous SO2+ production rate occurs at

the L-shell and System III longitude location of Io, as expected, because the SO2 abundance is

maximum at this position. When Io is west of Jupiter and thus in the hot plasma torus, the

calculated L-shell profile for the SO2+ production rate is shown in Figure 2. The SO2+

production rate in Figure 2 is dominated by electron impact ionization (solid line) at Io's location,

but well inside Io's orbit (where the electron temperature in the plasma torus drops to a lower

value), electron impact ionization becomes inefficient, and the O + charge exchange process

(dash-dot line) becomes dominant. The SO2+ production rate inside of Io's L-shell position

decreases very rapidly since SO2 is rapidly dissociated in the hot plasma toms very near Io and

its supply rate well inside Io's position (near L-5.25 where SO2+ was detected by the PLS

experiment aboard the Voyager 1 spacecraft) is therefore drastically reduced. When Io is east of

Jupiter and hence partially in the cold toms, the calculated L-shell profile for the SO2 +

production rate is, however, significantly different as illustrated in Figure 3. At Io's position, the

SO2+ production rate is now dominated by the O + charge exchange (dash-dot line), and inside

Io's position, the SO2 + production rate is now larger by much more than an order of magnitude

and extends to about L=4.4 for the lowest production rate shown. This bulge in the SO2+

production rate inward of Io's orbit is caused by the increase in the SO2 lifetime that occurred

approximately 150 ° earlier in System III longitude (see Figure 1) and that allowed the forward

neutral cloud density to be greatly enhanced inside of Io's orbit at the later time.

The results of Figures 2 and 3 and other model calculations not shown suggest that the

SO2+ abundance detected well inside of Io's orbit (L-5.25) near western elongation by the PLS

experiment aboard the Voyager 1 spacecraft during its 1979 flyby of Jupiter (Bagenal 1985) is

likely produced when Io is east of Jupiter and is then distributed about Jupiter by the corotational

motion of the plasma torus. Based on the SO2 source rate at Io of 8.9 x 1027 molecules s -1

adopted here and deduced earlier by Scherb and Smyth (1993) from the analysis of the [O I]

6300 _ emission near Io, values of the SO2+ production rate of about (0.5 - 1) x 1025 ions s -1 are

produced at L=5.5 for Io east of Jupiter. These SO2+ ions would then be located in the vicinity
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of westernelongationnearL=5.3 andmaybe ableto producethe SO2+abundancedetectedby

thePLSexperimentaboardtheVoyager 1 if the localSO2+lifetime in theplasmatoms is long
enough. The determinationof the SO2+lifetime in the plasmatorus is thereforecritical for

understandingthe presenceof SO2+ ions in the plasmatorus and for providing additional
constraintson theSO2 source rate at Io.

This residence lifetime of SO2+ in the plasma toms will depends upon the electron'

impact recombination rate and the electron impact dissociation rate. An estimate of the former

was acquired recently from Dr. D. E. Shemansky, while the latter is not known but is currently

under study by him. To develop some insight into the abundance of SO2+ inside Io's orbit, the

electron impact dissociation lifetime of SO2 was used as a proxy for the SO2+ electron impact

dissociation lifetime in the plasma toms. Based on this approach, very preliminary model results

for the production, destruction, and accumulation of SO2+ are presented in Figure 4 and suggest

that an SO 2 source rate at Io of -1028 molecules s -I will likely match the Voyager 1

measurement if the SO2 + effective average residence time at 5.3 Rj is as long as ~ 100 hours (see

Figure Caption). It should be noted that inside of Io's orbit the enhancement factor for the

average SO2+ residence time relative to its value in the plasma torus equator plane will be

particularly sensitive to the radial location in the plasma torus. This follows since the steep

temperature gradient inside of Io's orbit (which occurs approximately to the right of the vertical

line in Figure 4) dramatically reduces the scale height and hence volume of the plasma about the

centrifugal equator so that a new hot latitudinally-oscillating SO2+ produced inside of this

gradient will spend far less time interacting with the plasma and thus will have a greatly elevated

residence lifetime. Hence, one would expect to find SO2+ in the plasma torus preferentially

inside of Io orbit at -5.3 Jupiter radii as shown in Figure 4, which is just where these ions were

measured by the Voyager spacecraft. Further work will await an improved estimate of the SO2+

electron impact dissociation lifetime in the plasma torus.

2.3 Ultraviolet Observations for O and S Near Io

To study of the ultraviolet observations for O and S near Io measured in 1992 by the

Hubble Space Telescope (HST), such as those published by Clarke et al. (1994) or those acquired

but not yet reduced in our collaborative relationship with Dr. M. A. McGrath (see Table 2), we

have obtained from Dr. D. E. Shemansky electron impact excitation rates as a function of

electron temperature for various ultraviolet lines of O and S. These emission lines are

summarized in Table 3, where their excitation rates are given for an electron temperature of 60,

000 K. The most relevant emission lines have been updated and/or added to our neutral cloud



models, and model calculations for the brightnessand spatial distribution near Io of select

emission lines have beenundertaken. As anexample, the neutralcloud modelshasbeento

calculatethespatialdistributionof theOI 1304_ ultravioletemissionnearIo. In thecalculation,

a descriptionfor the plasmatorus with a nominal east-westelectric field (e = 0.025) and hn

inherentSystemIII asymmetryis adopted. In addition,anisotropicatomicoxygensourceat Io's

exobase(radiusassumedto be2600 km) of 3.2x 1027atomss-1ejectedwith a monoenergetic

speedof 2.6km s-1 is assumedandcorrespondsto that sourcededucedby modeling(seeSmyth

1992;ScherbandSmyth 1993)of theO(1D)6300_ emissionobservationfor theneutraloxygen
cloudmeasuredin 1980at largerdistancesfrom Io by Brown (1981). Io is chosento be located

at easternelongation(ageocentricphaseangleof 90°) andto haveanIo SystemIII longitudeof
50°. For theseconditions,themodelcalculationis presentedin Figure5.

In Figure 5, the spatialbrightnesspatternof theOI 1304_ emissionnearIo on the sky
plane is shownto distancesof + 10,000 km from the center of the satellite. This distance is

comparable to the average satellite Lagrange sphere radius of ~10,600 km (-5.85 satellite radii)

within which the gravitational grasp of Io dominates over that of Jupiter. The 1304 _ emission

brightness at a distance of 3 satellite radii (5445 km) from Io's center is about 10 Rayleighs.

This 10 Rayleighs brightness corresponds to an optically-thin column density of - 2.88 x 1013

oxygen atoms cm -2 for Io position's in the plasma toms (stated above), where the electron density

is -1200 cm -3 and where the electron temperature is -50,000 K so that the emission rate in Table

3 is reduced by a factor of 0.625. For distances from 3 satellite radii from Io's center to those

somewhat beyond than the Lagrange sphere radius, the simple assumed monoenergetic neutral

source of 2.6 km s-1 (where all atoms completely escape Io) is expected to provides a reasonable

estimate of the absolute brightness and its gradient, based on past modeling studies for the

sodium cloud. However, within 3 satellite radii of Io's center, the lower velocity components

that are ballistic in nature and that will be present in a more realistic description of the neutral

flux velocity distribution at the exobase will rapidly begin to dominate the column density and

hence emission line brightness. Based upon the more detailed calculations of Smyth and Combi

(1996) that successfully simulated the sodium eclipse measurements of Schneider et al. (199 l a)

from the exobase to distances far beyond the Lagrange sphere by using an appropriately chosen

neutral flux velocity distribution at the exobase, it is estimated that the column density of oxygen

should increase from ~3 satellite radii from Io's center to the satellite exobase by about a factor

of 5. If corrected for this flux velocity distribution, the exobase atomic oxygen column density

would then be -1.44 x 1014 cm -2, which is about one optical depth for the OI 1304/_ emission

line. This exobase oxygen column interestingly also implies that the exobase sodium column

density of ~ 1 x 1012 atoms cm -2 as determined from groundbased observations by Schneider et
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al. (1991a)is -1% of the oxygencolumn. This sodium-oxygenabundanceratio is similar to
valuesdeducedby othermethods.

Measurementsobtained from HST of the brightnessof various combinations,of the

multipletsof ultravioletemissionlinesof OI andSI verynearIo havebeenpublishedby Clarke'
et al. (1994)asseenthrougha 1.4arcsecx 4.3 arcsecobservingslit centeredon thesatellite. The

combinedbrightnessof thethreeOI 1304A multiplet linesandthesix SI 1299A lineswhenIo

was in sunlight wasestimatedto be 1320Rayleighsif the emissionregion areais assumedto

havearadiusof 1.75satelliteradii. For themeasurementsof Clarkeet al. (1994),Io's location in

the plasmatorus wasdifferent, having a geocentricphaseangle near 330° and a SystemIII
longitudevarying from 152-179°. For theseconditions,theelectrondensityis -1800 cm-3and

the electrontemperatureis -60,000 K. Thesedifferent plasmatorus conditions increasethe

brightnessof the 1304,_ line by a factor of 1.5 and 1.6, respectively. For the interval between

1.75 satellite radii from Io's center (located near of just within the 13 Rayleigh contour) and the

exobase (located at ~ 1.4 satellite radii), the average 1304/_ emission brightness is estimated to

increase by an additional factor of ~4 to account for a flux velocity distribution. The average

value for the 1304/_ line would then be approximately (1.5)(1.6)(4)(~13 Rayleighs) or -125

Rayleighs. By including the other two lines of the 1304/_ multiplet (1302.7/_ and 1306.83 A,

see Table 3), the total oxygen multiplet brightness would then increase by a factor of 3 to -375

Rayleighs. If a comparable column amount of atomic sulfur were also present, its six multiplet

lines (see Table 3) would have a combined excitation rate of 25.57 x 10 -10 cm 3 s-1 compared to

that of 13.94 x 10 -10 cm 3 s-1 for oxygen. The addition of the sulfur multiplet brightness in the

observing slit would then provide an enhancement factor of 2.83 so that the total estimated

brightness of the OI and SI multiplets together would be ~ 1063 Rayleighs. This value is similar

to the 1320 Rayleigh value measured. Simple comparisons of the calculated and measured

brightness for other emission lines measured by Clarke et al. (1994) are, however, not in

agreement and suggest that other excitation mechanisms (e.g., SO2 and/or 02 dissociative

excitation by electron impact or aurora emissions at or below the exobase) may be operative as

well as errors in the emission rates in Table 3. These matters will be explored more fully in the

future once additional reduced HST data becomes available.

2.4 Observations for O(1D) 6300 A Emission Near Io

Past and near future projected general information for the synoptic groundbased

observations of the O(1D) 6300 ]k oxygen emission brightness near Io acquired at the McMath-

Pierce telescope on Kitt Peak using the stellar spectrograph by Dr. F. Scherb (of the University of



Wisconsin-Madison) and colleaguesare summarizedin Table 4. Theseobservationswere

obtainedwith a short integration-time(-10-15 minutes)andwith aspatialresolutiondetermined

by the seeingconditions. Presentlytheseobservationsprovide a unique andlarge (over 200
spectra)opticaldatasetfor explorationof the abundanceof atomicoxygennearIo andits timE-

variableinteractionwith theplasmatoms. A detailedchronologyof the O(1D)6300_ oxygen
emissiondatais summarizedin Table5 for dataacquiredoverthe four-yearsperiod 1990-1993

andin Table6 for dataacquiredin 1994. Theseobservationsprovidea vital componentof our

researchprogramfor Io establishedby ourcollaborationwith Dr. Scherbin thepastseveralyears
andcontinuedin this project.

During 1990-1993,a total of 48 observationswereobtained(23 with Io eastof Jupiter
and25 with Io westof Jupiter) during 8 nights while in 1994a total of 131observationswere

obtained(72 with Io eastof Jupiterand59with Io westof Jupiter)during 16nights. The 1990-

1993observationsexhibit a significantbrightnessvariationwith Io SystemIII longitude for Io

both eastandwest of Jupiter asshownin Figure 6, althoughthereareobviousandlarge data

gaps in the coverage. The 1994observationsareexpectedto greatly improve the data gap
presentin the 1990-1993observationsasillustratedin Figure7.

2.5 Preliminary Reduction of the O(1D) 6300 A Emission Observations

For the O(1D) 6300 ,_ oxygen emission observations, Io's disk is centered in the 5.2

arcsec x 5.2 arcsec (i.e., -10 RloXl0 Rio ) field of view of the observing aperture and is not

occulted. The bright solar continuum reflected by Io is therefore contained in observed spectra.

In order to extract the much dimmer [O I] 6300 _ emission from Io in the observed spectra, the

reflected bright solar continuum must be carefully removed. This removal process requires that

the reflected solar continuum must be accurately fitted and subtracted from the observed spectra.

In the preliminary analysis (Scherb and Smyth 1993) of the 35 observations obtained in 1990-

1992, the reflected solar continuum was removed by fitting it with an iterative least-squares

computer program using .only Gaussians to represent the solar Fraunhofer lines, the terrestrial

atmospheric lines, and the [O I] 6300 _ emission feature. It is, however, well, known that Voigt

functions are much better than Gaussians as models of solar absorption lines and terrestrial

absorption lines, but at that time only the iterative least-squares computer program using

Gaussians was available: In the interim, a very powerful and effective iterative least-squares

computer program using multiple Voigt functions has been developed for Scherb by Dr. R. C.

Woodward. An example of the excellent fit of the new Voigt function program to the Kitt Peak

Solar Atlas in the vicinity of the an [O I] 6300 ,_ line is shown in Figure 8. The individual line

9



parametersobtainedin the fit to the Kitt PeakSolarAtlas are thenusedto model theabsorption
lines in the Io (and Europa) spectra, including convolution with the echelle spectrometer

instrumentalprofile function. An exampleof sucha fit to a [O I] 6300A observationacquired

on 5 May 1991 is show in Figure 9. Observationssummarized in Table 4 are presently
undergoinga final reductionusingthenew Voigt fitting programandwill soonprovide thefirst'

completecoveragein Io SystemIII longitudeof the 6300A emissionbrightnessvariation for Io

both east and west of Jupiter. The more accurateemissionbrightnesswill be particularly,

important in our modelingstudiesfor its dependence(e.g., sinks, excitation, dissociation)on_
SystemIII longitudeandeast-westasymmetriesin theplasmatoms.

Within this project, however,all of theseobservationshave undergonea preliminary
reduction using the new Voigt fitting program to determinetheir aperturebrightness. This
preliminaryreductionprovidesanearlycompletecoveragein Io SystemIII longitudeof the6300

emissionbrightnessvariation for Io both eastand westof Jupiter. The preliminary results

presentedherearebasedupon85 selectedwestdatapoints and64selectedeastdatapointsand
areshown,respectively,in Figures 10 and 11,wherethe brightnessvalue is referencedto the
disk areaof the satellite.

In Figure 10, the 6300A emissionbrightnessin the observingaperturefor Io west of

Jupiter is shown asa function of the Io SystemIII magnetic longitude angle. The angular
coverageof the data is good except for a small interval from - 230° to 270°. The 6300/_

emissionbrightnessis seento haveextrememaximumandminimum valuesthat differ by about
anorderof magnitude.Onaverage,however,thebrightnessvariesby abouta factorof ~2, with
a distinctmaximumnear200° anda minimum near20°. Sincethe6300A emissionrate is not

extremelysensitiveto temperature,this factor of two suggestthat theelectrondensitynear200°
may haveincreasedby a factor of abouttwo. The singlemaximum in the 6300 _kemission

brightnesslocated near 200° in Figure 10 verifies the pattern seenwith much less angular
coveragein the 1990-1992dataset(ScherbandSmyth 1993)andin the 1990-1993datasetin
Figure6whereall east-westdatawerecombined.

In Figure 11, the 6300 _ emissionbrightnessin the observingaperturefor Io eastof

Jupiter is shown as a function of the Io System III magnetic longitude angle. The angular

coverage of the data has two noticeable gaps: one for -30 ° to 60 ° and one for 160 ° to 220 °. The

6300 _ emission brightness is seen to have extreme maximum and minimum values that differ

by almost a factor of four. The absolute brightness and the extreme variation of the east data are

therefore less than for the west data. The average brightness, calculated separately for the east
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andwestdata,is, however,interestinglynearly the samebecauseof the largedynamicrangein

thewestdata. On average,the eastbrightnessvariesby a smaller factorof -1.3, with a poorly
definedminimum near 180° and apoorly definedmaximumnear0°. The data gap near 200 ° is

particularly problematical since additional data points might establish either a minimum _or

maximum here. Additional observations to fill this gap are therefore highly desirable, and firm

conclusions about the brightness behavior of the east data must await this information.

2.6 Preliminary Assessment of the O(1D) 6300 ._ Emission Observations

The possibility that the 6300 A emission brightness near 200 ° Io System III magnetic

longitude has a maximum for the satellite west of Jupiter and a minimum for the satellite east of

Jupiter is, however, intriguing. This behavior is reminiscent of the "bite-out" in the sodium cloud

south of Io that occurs when the satellite is in the active sector and onls_ when the satellite is near

western elongation (Smyth and Goldberg 1996). This behavior appears to be related to the

decrease of the small sodium lifetime of by a factor of -2 in the active sector (due to an active

sector increased in the electron impact ionization rate by a factor of two) when Io is near western

elongation. The sodium-cloud transport time and lifetime are then competitive, hence causing a

noticeable reduction in the population of the sodium column brightness. This does not occur for

Io near eastern elongation since the east-west electric field alters the plasma toms properties at

the orbital position of the satellite so as to increase the absolute sodium lifetime, making it is no

longer competitive with the sodium-cloud transport time. This dual dependence for Na suggests

that the combined effects of a System III longitude asymmetry and an east-west asymmetry may

also play a role in the different behavior of the variation of the 6300 _ emission brightness for Io

east and west of Jupiter.

The angular pattern of the 6300 A emission brightness in Figure 10 for Io west of Jupiter

is remarkably similar to the variation of the 6731 A ion emission line observed in the plasma

toms. For the location of the so called "ribbon", the 6731 A ion emission line brightness

measured by Schneider and Trauger (1995) has a minimum near 20 ° System III magnetic

longitude and a maximum near 200 ° System III magnetic longitude with a corresponding

minimum to maximum brightness variation of -3-4. The "ribbon" is the brightest feature on the

centrifugal equator of the plasma toms and is located just within Io's orbit (5.90 satellite radii) by

a distance that depends upon the System III magnetic longitude at the east or west location of the

plasma torus observation. For observations that ranged in radial distances from -6 to 7.5 satellite

radii, the 6731 ._ ion emission line brightness measured by Brown (1996) show a broad

minimum between 0 ° and 45 ° System III longitude and a maximum at 170 ° System III longitude.
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Thecorrespondingminimumto maximumbrightnessvariationis -2 for a radialdistancesnear6

satelliteradii andbecomesprogressivelysmallerwith increasingdistance,essentiallyvanishing
at a radial distanceof - 7.5 satellite radii for plasmatoms observationswestof Jupiter. The
variationof the6731A ion emissionline brightnesswith SystemIII longitudewasshowhto be

anticorrelated(1) with theparallel ion temperature(SchneiderandTrauger 1995),where in the

"ribbon" thereis a minimum to maximumvariationof afactor of ~2.5 in theeastand-4 in the

west and(2) with the perpendicularion temperature(Brown 1996),whereat a distanceof -6

satelliteradii thereis aminimumtomaximum variationof afactorof -1.8 in theeastand~2.1 in

thewest. This anticorrelationhasleadto thepicturethatthebrightnessasymmetryof theplasma
toms 6731A emissionis dueto alatitudinally moreconfinedandhencemoredenseplasmatoms

centerednear200 SystemIII magneticlongitude(i.e., theelectrondensityhasincreasedby -1.4-

2). The reasonfor the lower ion temperaturenear200 SystemIII magneticlongituderemains,

however,unknown. Direct information regardingthe variationof the electrontemperatureand

densitynear200°, which is more importantin understandingthe variationof the neutraloxygen
6300A.emissionbrightnessandthelifetime of sodium,is alsounavailable.Thevariationof the

6300._ emissionbrightnessmay,therefore,provideadirectprobeof theplasmatomsproperties
near200° unlessindependentand very local excitation mechanismsat andbelow the satellite

exobase (e.g., auroral emission excited by the Birekland current) dominate the emission
brightnessin the larger 5.2arcsecx 5.2arcsecobservingaperture.

It is interestingto comparethepatternof the 6300,_ emission brightness in Figure 10 to

that of the magnetic field strength at Io's northern flux tube footprint in Jupiter's atmosphere. To

make this comparison, however, it is first important to understand that the System III longitude

angle of the flux tube footprint in Jupiter's atmosphere (call it FPIII longitude), where the current

circuit is completed in the ionosphere, is different than the System III longitude angle of Io (call

it IoIII longitude) which is located at -6 planetary radii from the planet. The FPIII longitude

occurs ahead of Io in its orbit and hence has a smaller System III longitude by an amount A¢ :

IoIII longitude = FPIII longitude + A¢

Examination of images of the excited H3 + near-infrared emission (3.40 gm) at the footprint Of

the Io flux tube in Jupiter's atmosphere by Connerney et al. (1993) provided a value for Aq_ of

15-20 °. As they noted, Goldreich and Lynden-Bell (1969) had earlier indicated that a ~ 15 ° lead

angle of the Io footprint with respect to that of the undisturbed field is what is also needed to

symmetrize the observations of the Jovian DAM at 90 ° and 240 ° Io phase, relative to an Earth

observer at 180 ° phase. In a more recent paper, Prang6 et al. (1996) examined HST images at
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Io's footprint for ultraviolet H2Lyman bandemission(near 1550A) anddetermineda smaller

valuefor A_bof 7-12.3°. They alsonoted that the valueof the lead anglemaybe intrinsically

variableandmaydependuponthespacetimenatureof the ion mass-loadingrateat Io's position.
For our immediatepurposes,we adopta value of 15° for the leadangle. The magnetic fiold

strengthatIo's northernflux tubefootprint hasapeakof >13gaussata FPIII longitudeof-150 °

(IoIII longitude of 165°),falls off rapidly by a factor of-2 by 240° FPIII longitude(255" IoIII

longitude),andremainsratherflat in theangularrange240-360° FPIII longitude(255-375° IoIII

longitude). The variationof the6300_ emissionbrightnessin Figure 10is thereforeremarkably

similar to the variation of the magneticfield strengthat Io's northernflux tube footprint. The
increasedmagnetic field strength in a sector of Jupiter's ionospherereducesthe Pedersen

electrical conductivity in that sector. Sucha sectorreductionof the Pedersenconductivity was

recently reportedby Marconi and Smyth (1995) to increasethe outward transportrate of the
plasmatorus in that magneticsector. Marconi andSmyth(1995)also notedthat this increased

outwardtransportratemaypossiblyprovideabasisfor theobservedcooling of the ions centered

near200° IoIII longitude in the plasmatorus. This processmight also enhancethe flow of

plasmainto themagneticsectorcenterednear200°IoIII longitudebothfrom Jupiterandfrom the

outerimpoundingplasmaasit is convectedinwardandtherebydirectly affect theelectronimpact
excitationandionization ratesin this sector. More detailedanalysisis requiredto assessthese
excitingpossibilities.

The analysis by Scherband Smyth (1993) of the 6300 ._ emission brightness data

acquiredin 1990-1992identified two excitation processes:(1) electron impact excitation of

atomicoxygenand (2) electronimpactexcitationby moleculardissociationof SO[i.e., SO+ e
S + O(1D)+ e]. They suggestedthat the lattermechanismis likely the viablemechanismto

explain the large6300_ emissionbrightnessandits factorof five SystemIII variability, where

SO is either presentat the exobaseor producedsubsequentlyby dissociation of SO2. The

variation as a function of the Io SystemIII longitude of the 6300 ]k emission brightness in

Figures 10 and 11 provides additional information that may be used to explore the nature of the

excitation mechanism. The 5.2 arcsec x 5.2 arcsec observing aperture is very close to the size of

the Lagrange sphere, within which the typical transport times for ballistic and escape orbits are

-1 hour. This transport time is short compared to the combined electron impact and charge

exchange lifetime (many hours) of atomic oxygen at Io's position so that, for a constant atomic

oxygen source, the abundance of OI in the Lagrange sphere volume should not depend very

much upon the position of Io in the plasma torus. If electron impact excitation by the plasma

torus is the only mechanism for exciting the 6300 ._ emission brightness in the Lagrange sphere,

then the variation of this brightness should, approximately, vary as the excitation rate evaluated
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at the location of Io in theplasmatoms. This variationof the excitationrateat Io's position in
theplasmatorushasthereforebeencalculatedandis shownin Figure12.

Theplasmatorusdescriptionadoptedin Figure 12is inherentlysymmetricin SystemIII

longitudeand is for anoffset and tilted dipole magneticfield in the presenceof a nominal (_,

=0.025) east-westelectric field. The excitation rate, in relative units, is dominatedby the
variation of the electron density at Io's position in the plasma toms, since the electron

temperaturedoesnotvary significantlyat Io's positionandtheemissionratefor this temperature
variationis not on thesteeppartof its temperaturecurve. The variationof theexcitationrate is,

however,very different for Io near westernelongation (Io phaseangle of 270°) and eastern
elongation(Io phaseangleof 90°) andis causedby the east-westelectric field. Nearwestern

elongation,Io's orbital positionis shiftedoutwardin theplasmatoms andis locatedwell within

the warm torus. The maximum excitation rate is thereforecenteredabout 110° and 290° as

expected,sincetheelectrondensityis maximumatthe intersectionof thesatelliteorbit planeand
theplasmatoms centrifugalequatorplane. Theminimum excitationrate is centeredabout20°

and 200° as expected,since the electron density is a minimum at the extremesouthernand

northernlatitudeswhenIo is at its maximumdistancefrom the centrifugalequatorplane. This

behavior,however, is very different than the observationsin Figure 10,wherethe brightness

peaksis near200°. Thisdifferencesuggeststhat thepresenceof a largeSystemIII longitudinal

asymmetrypeakednear200° andnotjust confinedto theplasmacentrifugalequatorplanewould

be requiredto alter this situationin the correctdirection. Simpleenhancementsof the plasma
torusnear200° which havealsobeenconsideredto datedonot completelycorrectthis situation

nearwesternelongation. In Figure 12neareasternelongation,Io's positionin thetomsis altered

by theeast-westelectricfield sothatit movesinward towardthecold tomsby avariabledistance

thatdependon theIo SystemIII longitudeangle. Thiscausesaminimumin theexcitationrateat

-150° anda maximumthatis centerednear~270°. Theminimum is locatednearthe observed

nominalminimumin Figure 11,but thecalculatedvariationof thebrightnessfor Io neareastern

elongationis -3, which is much larger than thenominal variationof ~1.3for the observations.

This behaviorsuggestthattheeast-westelectric field might be responsiblefor aminimum near

200°, but that theplasmatoms must haveaninherentSystemIII longitudeasymmetryso asto
reducethecalculatedexcitationratenear270°. Alternatively, this maysuggestthatthe electron

impact excitation of atomic oxygen is not the dominantmechanismand that a dissociative
excitationmechanismmaybemoreappropriate.

Theexcitationratesfor electronimpactdissociationof SO,aonestepprocess[i.e.,SO+
e --->S + O(1D)+ e] andof SO2,atwo stepprocess[i.e.,SO2+ e --+SO+ O+e ; SO+ e --+S +
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O(1D) + e], aremorecomplexanduncertain. The uncertaintyoccurssincetheelectronimpact

dissociativerate for SO is not well known, theexothermicnatureof its liberatedO(ID) is not

known, and the delay times and exothermic nature of the two step process for SO2 are not

known. For initial considerations, the lifetime of SO2 at Io's position in the plasma is calculated

and shown in Figure 13 for the same plasma toms description adopted in Figure 12, The lifetime

of SO will likely be somewhat similar in nature and will be assumed the same for our immediate

considerations. Since SO would approximately fill the observing aperture for these lifetime

values, the emission rate would be proportional to the reciprocal of the lifetime. At eastern

elongation, this emission rate would then have a minimum at -150 ° and a maximum centered

about -270 °. At western elongation, this emission rate would have a minimum centered about

20 ° and 200 ° and a maximum centered about 110 ° and 290 °. This is the same incorrect

calculated pattern noted above for atomic oxygen. Additional calculations for SO involving

simple enhancements of the plasma torus electrons near 200 ° and additional corrections to

account for the lack of SO filling the whole observing aperture have also been undertaken, but

these additional calculations have not yet been able to correct completely the gap that exists

between the simulated and observed System III longitudinal behavior for the 6300/_ emission

brightness. The System III longitudinal behavior of the 6300 _ emission brightness for the two

step process of SO2 is too complex to pursue in this simple manner. It will require full SO2

neutral cloud model calculations once a plasma toms description with a proper System III

longitude dependence is available.

From the above preliminary consideration three important directives emerge: (1) it is

important to develop a more accurate picture for the System III longitude structure of the

electrons in the plasma toms, (2) it is important to obtain a more complete Io System III

longitude coverage, particularly near 200 °, for the OI 6300 ,_ emission brightness near Io, and (3)

it is important to distinguish the role of plasma toms excitation mechanisms and independent

excitation mechanisms that are local to Io's atmosphere. The first directive is ongoing in another

project. The second directive will be addressed in the summer of 1996 by F. Scherb who plans

to obtain at the McMath-Pierce telescope at Kitt Peak two weeks of OI 6300 _ emission

measurements for Io. The third directive will be pursued in future comparisons of (1) HST

observations for high spatial resolution scans across Io of OI and SI ultraviolet emission lines

acquired only for very limited System III longitudes and (2) groundbased observations for the

lower spatial resolution 6300 _ emission brightness in updated versions of Figures 10 and 11

acquired for an almost complete System III longitude coverage. The lack of availability of the

final reduced observations for the HST and groundbased data sets has, to date, hampered this

very interesting comparison.
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III. Na FAMILY

3.1 Review of the 1987 Observations for the Sodium Emissions Near Io

The 110 sodium emission spectra acquired from Catalina Observatory over 5 nights in

October of 1987 by N. M. Schneider are summarized in Table 7. In Table 7, the data file

number, the UT date, the observational midpoint time, and the corresponding Io geocentric

orbital longitude and Io System III magnetic longitude are given. The slit for the observation

was 40 arcsec long with Io located at the midpoint and was -1 arcsec wide. In Table 7, the

orientation of the long dimension of the observing slit is indicated and occurs north-south for

only 7 spectra and east-west for 103 spectra. The midpoint of the slit was centered on Io for all 7

north -south spectra. For the 103 east-west spectra, the midpoint position of the slit was varied

vertically among three locations designated by (1) "N" when the slit was positioned 5 arcsec (-10

satellite radii) north of Io for 20 spectra, (2) "Io" when the slit was centered on Io for 64 spectra,

and (3) "S" when the slit was positioned 5 arcsec south of Io for 19 spectra. In Table 8, the

observations are subdivided into 63 observations for Io east of Jupiter and 47 observations for Io

west of Jupiter. It can be seen in Table 8 that observations were acquired (1) on October 13 and

15 when Io was only east of Jupiter, (2) on October 16 when Io was only west of Jupiter, and (3)

on October 17 and 18 when Io was both east and west of Jupiter.

All the 110 spectra have been reduced. Three data products for one east-west spectra

acquired when Io was in the field of view are illustrated in Figure 14. As a function of the

distance along the east-west observing slit, the three data products for the D1 and D2 lines are (1)

the brightness profile, (2) the velocity FWHM of emission profile, and (3) the velocity centroid

of the emission profile relative to Io. The variation as a function of the geocentric phase angle of

these profiles for the first and third of the data products is shown in Figures 15 and 16,

respectively. The brightness profile in Figure 15 can be seen to decrease as Io moves away from

eastern or western elongation as expected for an excitation mechanism of solar resonance

scattering. The analysis of the 1987 emission observations has only been initiated in this project

and will be continued in a new three-year follow-on project. The emphasis in this project has

been directed to the completion of the analysis of the earlier 1985 emission data and its

comparison to other sodium data. This analysis and comparison is presented in Smyth and

Combi (1996), which is attached in the Appendix. Part of the background review work required

in this comparison is presented in the following section.
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3.2 Review of the Velocity Dispersion of Sodium Atoms at Io's Exobase

An extensive review for the analysis of sodium observations near Io and its orbit was

undertaken in order to ascertain the implications and constraints that these observations have

imposed on the velocity dispersion and source strength of sodium at the satellite exobase. The

results'of the review are summarized in Table 9 and have been incorporated in Smyth and Combi

(1996). In Table 9, the analysis of sodium observations are divided into three spatial regions: (1)

the Io corona located within the Lagrange sphere of Io, (2) the neutral cloud located beyond the

Lagrange sphere and near Io's orbit, and (3) the north-south oscillating directional features that

are observed to trail Io in its orbit. Analysis of sodium in the Io corona can be, furthermore,

subdivided into early observations of the average intensity in a 8 arcsec x 3 arcsec slit centered

On Io reported by Bergstralh et al. (1975, 1977) that indicated an east-west intensity asymmetry

of -1.25 and later observations of a more spatially detailed one-dimensional column density

profiles within the Lagrange sphere reported by Schneider et al. (1987, 199 l a). A summary of

the review for the three spatial regions is given below.

3.2.1 Corona: East-West Intensity Asymmetry:

Studies of Smyth (1983) based upon sodium atoms ejected monoenergetically from Io's

exobase established that small scale structures in the D-line intensity profile observed as a

function of the Io geocentric phase angle could arise from modulation of the atoms escape rate

from Io caused by the action of solar radiation acceleration in the D-lines. These modulations

occur primarily for exobase speeds of 2.0 krrds and 2.1 km/s, which are near the escape-speed

threshold of the Lagrange sphere. Studies of Smyth and Combi (1987a) showed that the main

reason for the east-west intensity asymmetry was, however, an east-west electric field which

altered the plasma properties at Io's orbit so as to increase the sodium lifetime and hence sodium

abundance when Io was preferentially east of Jupiter. More complex modeling studies of Smyth

and Combi (1988b) were undertaken to constrain the flux velocity dispersion for sodium at Io's

exobase by simultaneously fitting the average east-west intensity asymmetry and the general

spatial morphology of the forward sodium cloud, located on a much larger spatial scale well

beyond the Lagrange sphere. These studies showed that the sodium ejection speed at the exobase

required to fit the east-west intensity asymmetry is double-valued, having a lower value < 1 km/s

and a higher value in the range 2.6-3.65 krrds. For a Maxwell-Boltzmann flux distribution, the

lower and higher speed values were 0.71 km/s (T--460 K) and 3.65 klrdS (T--12,300 K). Neither

value was, however, suitable for properly populating the forward cloud. The lower value

produces essentially all ballistic atoms orbits which could not populate the forward cloud, while

the higher value was significantly larger than the nominal -2.6 km/s characteristic velocity
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requiredto reproducetheproperspatialmorphologyfor theforward cloud. For thehigherand
morenominalthermalexobasetemperaturesin therange-1000-2000K, thecalculatedeast-west

intensity ratio was much higher than the observedvalue with the atoms still contributing

primarily to the coronadensity and far too deficient in energyto contributeany significant
sodium to the forward cloud. For the preferred ((z=7/3)modified-sputteringdistribution of'

Smyth and Combi (1988b)with a sourcestrengthof ~2 x 1026atoms/s,the lower and higher

speedvalueswere <0.5 km/s and -2.9 krrds, respectively, with the latter value being preferred,

because of its closer proximity to the -2.6 krrds characteristic velocity for the forward cloud.

Interestingly, however, it is actually the lower value which has recently been shown by Smyth

and Combi (1995, 1996) to reproduce the correct one-dimensional profile for the sodium column

density within the Lagrange sphere.

3.2.2 Corona: Column Density Profile:

In modeling studies, Smyth and Combi (1987b, c) determined that typical forward cloud

brightness data for the sodium cloud could be properly simulated well beyond the Lagrange

sphere radius of ~5.81 Io radii by an average sodium source of-1 x 1026 atoms/s ejected

monoenergetically from Io's exobase with a characteristic velocity of -2.6 krn/s. They also

established that this same sodium source reproduced the column density profile of Schneider et

al. (1987) within the Lagrange sphere up to a radius of ~3.5 Io radii. For a radius smaller than

-3.5 Io radii, the calculated profile was lower than the observed profile, indicating that lower

velocity (ballistic and escape) components are required, in addition, in a more realistic flux

velocity dispersion. A similar behavior for the calculated column density profile, with an even

more dramatic departure from the observed profile both inside and outside the Lagrange sphere,

was also later shown by a model of Ip (1990) who assumed an exobase speed of 3 km/s but did

not include the gravity of Jupiter so as to properly include the near zero escape speed conditions

at the Lagrange sphere. Adopting for the sodium atoms at the exobase a simple (Vb = 0)

classical sputtering energy distribution with a low energy cut-off and also excluding Jupiter's

gravity, McGrath (1988) modeled the column density in the Lagrange sphere region and

produced a profile with a slope slightly less steep than the observation for an infinite sodium

lifetime and a slope somewhat steeper than the observation for a sodium lifetime of 3 hr.

Adopting a Maxwell-Boltzmann flux distribution, assuming an infinite sodium lifetime, and

similarly also excluding Jupiter's gravity, Summers et al. (1989) and Schneider et al. (199 l a)

modeled the column density within the Lagrange sphere region and produced a profile that

reasonably well matched the observed profile for an exobase temperature, respectively, of 1000

K based on the partial eclipse data set (Schneider et al. 1987) and of 1500 K based on the
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completeeclipsedataset (Schneider1988). Although thesedifferent flux velocity distributions
reasonablyfit the observationswithin theLagrangesphere,it is clear from theearlier studiesof

Smyth and Combi (1988b) that the Maxwell-Boltzmann distributions are energetically
inappropriate and that the more energetically promising sputtering distribution cannot 15e

exploredadequatelynearor beyondthe Lagrangesphereradiuswithout properlyincluding the
gravity of Jupiter,solar radiationacceleration,andthe spacetimevariablelifetime of sodiumin
the plasmatorus.

3.2.3 Sodium Cloud

The early studies of the sodium cloud were general in nature probing its poorly

documented spatial and angular extent about the planet. An excitation mechanism for the cloud

of solar resonance scattering was established by Bergstralh et al. (1975). Based upon this

mechanism and limited angular extent data determined by slit-averaged intensity data, Carlson et

al. (1975) undertook monoenergetic (3.5 krrds) model calculations and estimated that the sodium

cloud lifetime (assumed to be spatially uniform) was an order of magnitude faster than

photoionization and was likely determined by electron impact ionization by the (then very poorly

characterized) plasma in planetary magnetosphere. This general picture was confirmed by more

extensive model calculations performed by Fang et al, (1976) to investigate the structure of the

cloud in the long-lived limit and by Smyth and McElroy (1977) to explore the time evolution and

two-dimensional nature of the cloud for exobase velocities near or just above the escape speed

from the Lagrange sphere. The acquisition of sodium cloud images in late 1976 and early 1977

brought this subject into dramatic focus. By adopting a classical sputtering flux distribution that

peaked at 4 krrds, Matson et al. (1978) successfully modeled a one-dimensional brightness

profile, extending from Io in the forward cloud to -80 Io radii and in the trailing cloud to -40 Io

radii. The one-dimensional brightness profile was derived from a cloud image by averaging it in

the north-south direction. The analysis by Smyth and McElroy (1978) of the much larger sodium

cloud image data set (Murcray 1978) indicated that the forward cloud could be characterized by

an exobase ejection speed of ~2.6 krrds and that its changing intensity pattern could be

understood as the projection on the sky plane of a changing viewing perspective of an

approximately steady state cloud as Io moved on its orbit around Jupiter. In both modeling

efforts, the observed predominance of the forward sodium cloud over the trailing cloud was

accomplished both by limiting the exobase source area to a hemisphere (see Table 9) and by

limiting the spatially uniform lifetime so as to dynamically select sodium atom orbits that would

primarily populate the forward cloud. Modeling studies of Macy and Trafton (1980) of the radial

and vertical cloud structure on larger spatial scales indicated that dispersion speeds with values at

least up to 13 km/s were required to explain a variety of different observations. Additional
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modelstudies(Smyth 1979,1983)showedthat theeast-westorbital asymmetry of Goldberg et

al. (1978), i.e., the lack of cloud mirror symmetry when the sodium cloud is compared at

diametrically opposite Io orbital phase angles east and west of Jupiter, was due to the perturbing

action of solar radiation acceleration on the sodium atom orbits. Adopting a one-dimensional

radial dependent sodium lifetime in the plasma torus based upon limited Voyager spacecraft'

encounter information in 1979 and retaining their asymmetric exobase source for a classical

sputtering distribution with a peak velocity at 4 km/s, Goldberg et al. (1980) successfully

modeled a one-dimensional brightness profile derived from a sodium cloud image acquired

during the Voyager 1 encounter period for distances extending from Io in the forward cloud to

-80 Io radii and in the trailing cloud to -30 Io radii. Later modeling by Smyth and Combi

(1988b) using a more accurate two-dimensional spacetime-dependent lifetime for sodium in the

plasma toms demonstrated that the predominant forward cloud was caused by the highly radially

dependent sink for sodium that exists in the plasma toms inside and outside of Io's orbit. Their

exobase source strength for the sodium cloud was - 2 x 1026 atoms/s.

3.2.4 Directional Feature

Pilcher et al. (1984) using their observations acquired in 1980 and 1981 for weaker D-line

emissions in the trailing portion of the sodium cloud discovered an elongated feature in the

sodium brightness distribution that on the sky plane was directed away from Jupiter and was

inclined sometimes to the north and sometimes to the south of the satellite's orbital plane. The

north/south direction of the feature was shown to be correlated with Io's magnetic longitude and

suggested a formation mechanism involving the oscillating plasma torus. Modeling analysis by

Pilcher et al. indicated that the feature resulted from a high-velocity (-20 km/s) sodium source

combined with the oscillating neutral sodium sink provided by the plasma torus. The

directionality of the high-velocity source was at near right angles to Io's orbital motion with a

source strength required on the outer satellite hemisphere of -1 x 1026 atoms/s. The peculiar

directionality of the source was investigated by Sieveka and Johnson (1984) who concluded that

it was produced by direct collisional ejection of neutral sodium from the exosphere by the

corotating plasma flow past Io, as exhibited in their discussion of more appropriate interaction

potentials for these collisional processes. More recent modeling by Smyth and Combi (1991) of

the sodium magneto-nebula or zenocorona, detected out to 400-500 planetary radii from Jupiter

by Mendillo et al. (1990), showed that it required a two component source: a high-velocity (-20

km/s) exobase sodium source of -1 x 1026 atoms/s for the spatial distribution nearer the planet

and an even higher-velocity (-57 km/s) exobase sodium source of -2x 1026 atoms/s for the

spatial distribution further from the planet. Both source components, however, were based on

ion-neutral charge exchange processes in Io's exosphere and were therefore composed of a
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tangentialspeedto Io's orbit at Io's positionplus an isotropic Maxwell-Boltzmanndistribution

With a mostprobablespeedof aboutone-thirdof thetangentialspeedin theJupiterframe(i.e.,

one-thirdof -37 and -74 km/s, respectively). The lower componentis thereforesymbolically
denotedin the Io frameby 20q-12km/s in Table 9. Very recently, successfulmodelingof t]ae
directional featureshasalsobeenreportedby Wilson andSchneider(1995)who havededuceda

similar lower componentsourcedenotedin Table 9 by 20+10-20 km/s, where the isotropic
portion of their sourcemaybevariablein magnitude.

3.2 Sodium Model for a Molecular Ion Source

In the paper by Smyth and Combi (1991), the comet model of Combi and Smyth (1988

a,b) was modified for the purpose of constructing a model of the sodium zenocorona (or

magneto-nebula) which was measured to distances of 400-500 Jupiter radii (Rj) from the planet

by Mendillo et al. (1990). In that model, sodium atom trajectories emanating from Io were

calculated in a heliocentric frame, accounting for solar gravity and solar radiation pressure

explicitly. The gravitational attraction of Jupiter was accounted for only implicitly through the

approximate subtraction of the gravitational escape energy from Jupiter at Io's distance. This

model was useful for exploring the very large scale "coma-like" shape of the sodium cloud which

is apparent on the order of an astronomical unit or N2000 Rj. For modeling the wide-field

images of Mendillo et al., covering distances out to about 500 Rj, the effect of solar radiation

pressure on the observed shape of the sodium cloud is, however, small.

In this project, we are interested not only in the wide-field type of image data of Mendillo

et al. but also in more near-Jupiter images, covering distances more typically on a scale of-10

Rj. Models developed in older work successfully addressed the low and intermediate speed

sodium, 1-25 krrds, and account for the circular-restricted three-body problem (e.g., Smyth

1979, Pilcher et al. 1984, Smyth and Combi 1988 a,b) between the sodium atom, Jupiter, and Io.

This model is most useful for the low speed sodium (1-10 km/s) that is generally responsible for

the forward (Region B) cloud. For intermediate and high speed sodium (10-100 km/s), both in

the vicinity of Io (-10 Rj from Jupiter) and out to the region of the measured zenocorona (-500

Rj from Jupiter), it was judged that a model which accounted explicitly for the two-body

problem between Jupiter and a sodium atom ejected from Io, was more than adequate for

tracking the trajectories of atoms. This simpler method yields a computational tractable basis for

studying in a physically detailed manner (1) the large scale zenocorona, (2) the so-called

molecular-ion source of sodium responsible for the jet of sodium emitted from the region just

ahead of Io (Schneider et al. 199 ib), and (3) the relative strengths of the two.
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Thecore of a new two-body model (sodium atom and Jupiter), based on algorithms and

code contained in former comet and zenocorona models, has been constructed and is now

undergoing testing. The standard iterative inversions of Kepler's laws, as described by Combi

and Smyth (1988a,b) in connection with the orbit of the cometary nucleus, were employed. This '

is in contrast to the fourth-order Runge-Kutta scheme employed in the previous zenocorona

model of Smyth and Combi (1991). The previous zenocorona model results can be faithfully

reproduced, in fact improved, with many more particles (much reduced statistical noise)in a

small fraction of the computational time, using the two-body model.

A simple preliminary version of a molecular-ion jet source for sodium atoms has also

been added to the two-body model. The scenario for the model was adopted from the picture

described by Schneider et al. (1991b) of sodium-bearing ions (NaX +) being picked up at Io's

position, in the frame of the corotating dipole magnetic field. The ions are accelerated to

corotational speed and considered to decay through the process of dissociative recombination,

producing neutral sodium atoms with some branching ratio. In this preliminary version of the

model, the decay rate is considered to be simply exponential, similarly to Schneider et al. The

NaX + ions bounce up and down along a magnetic field line about the centrifugal equator as

described by Cummings et al. (1980). Using this model a credible reproduction of the spatial

morphology of the sodium molecular jet as seen in the images presented by Schneider et al.

(1991b) is obtained and shown in Figure 17. The next step in this process is to replace the

simple time constant in the exponentially decaying molecular-ion source and the simple dipole-

field bounce oscillations, with a space-time dependent lifetime for the decaying molecular-ion

source in a physically realistic description of the plasma torus. The dissociative recombination

rate must by nature be dependent on plasma density and temperature. With such a model, we can

begin to explore the effects on the sodium jet of variations in the source rate produced by more

realistic processes such as the east-west electric field, higher order magnetic field descriptions,

and System III longitudinal asymmetries in the plasma torus. Similar processes can effect the

direct charge-exchange component of fast sodium as well.

IV. NEUTRAL CLOUDS FOR THE OTHER GALILEAN SATELLITES

The possibility that Europa has an interesting atmosphere and that this atmosphere can

play a noticeable role in the structure of the planetary magnetosphere has evolved rapidly,

particularly in the past year. From the analysis of Voyager plasma data (Bagenal 1989; Bagenal
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et al. 1992),it wassuggestedthatEuropamaysupplyapossibleweaksourceof oxygenionsfor

Jupiter'smagnetospherebeyond7.25planetaryradii, which is beyondIo's orbit (5.90planetary
radii) and nearEuropa'sorbit (9.40). Even more definitively, the recentdiscoveryof atomic

oxygenin the atmosphereof Europafrom HST measurements(Hall et al. 1995)hassuggested
that 02 in presentin thesatelliteatmosphere(< 900km altitudeor < 0.57satelliteradii altitude)

produced from breakupof water moleculesliberated from its icy surface. The preliminary

investigationsof Hall et al. indicatedthat the observedatomicoxygen is excitedprimarily by

electron impactdissociationof an 02 column density of -1.5 x 1015 molecules cm -2. Very

recently near Europa, atomic sodium emissions in the optical D1 and D2 lines excited by solar

resonance scattering have been discovered from groundbased measurements (Brown 1995;

Brown and Hill 1995) to distances at least as large as -25 satellite radii from the satellite. The

Lagrange sphere radius of Europa, where the satellite's gravitational field dominates over

Jupiter's gravitational field is, however, only 8.7 satellite radii. Europa therefore has an extended

sodium corona (radius < 8.7 satellite radii) and also an escaping sodium source (radius > 8.7

satellite radii) which forms a sodium cloud that should be concentrated near the satellite's orbit.

Brown and Hill suggest that a likely source for the atomic sodium is sodium ions from the

planetary magnetosphere that are captured and neutralized by Europa' surface and then sputtered

from the surface by the dominant oxygen and sulfur ions in the magnetosphere. Europa therefore

appears to have a bound and escaping atmosphere like Io with neutral clouds that likely form at

least partial gas tori about Jupiter.

The presence of bound atmospheres, extended coronae, and neutral gas clouds for at least

one Galilean satellite other than Io is therefore a reality. We have therefore undertaken in the

past quarter a very preliminary assessment of the general situation for all Galilean satellites and a

more specific preliminary assessment for Europa. A number of physical and orbital parameters

for the four Galilean satellites and for Jupiter have therefore been calculated and updated and are

summarized in Table 10. These parameters are important in determining the orbital dynamics of

neutral atoms near the satellite and in the larger circumplanetary environment. From Io outward,

the average Lagrange radius (within which the satellite's gravity dominates over the planet's

gravity and within which a bound corona may exist) is given in Table 10, respectively, in

satellite radii as 5.90, 8.70, 12.05 and 20.90. In the sodium observations of Brown and Hill

(1995) for Europa, there is an apparent change in the slope of the deduced column density profile

at about 8.7 satellite radii which may be a signature that indicates the boundary between a bound

component and an escaping component of the atmosphere. A similar slope change exists for the

sodium atmosphere of Io. From Io outward, the two-body escape speeds for the four Galilean

satellites are 2.563 km/s, 2.020 kin/s, 2.741 km/s and 2.446 km/s, respectively. It is therefore
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somewhateasierfor a nonthermalgassourceto escapefrom Europathan from the other three

Galileansatellites. For atomicsodiumandpotassium,theescapeof thegasfrom theLagrange

spherewill furthermorebemodulated,asa functionof thegeocentricsatellitephaseangle,by the
presenceof the solar radiation accelerationin theD-lines. This modulationwasdemonstrated

earlier for escaping sodium at Io (Smyth 1983). Note, however, that the maximum solar'

radiation accelerationmeasuredasa percentageof Jupiter'sgravity at the four satellite orbits

increasesfrom Io outward,having, respectively,valuesof 1.76%,3.90%,8.69%,and22.0%for

sodium and 1.73%,4.34%, 10.9% and 32.6% for potassium. Relative to Io, therefore, the
modulationby solar radiation accelerationof the escaperatesof Na and K from the satellite

Lagrange sphereswill vary progressively more dramatically for the outer three Galilean

satellites. In addition, themodification by solarradiation accelerationof the orbital dynamics
andhencespatialmorphologyof the neutralsodiumandpotassiumgascloudsfor eachsatellite

in the circumplanetaryspacebeyondthe Lagrangespherewill increasedramatically as one

movesoutwardfrom Io. Theinterplay of thesedynamicalchangesandthe spacetimevariable

lifetime of sodiumandpotassiumwithin theplasmatoruswill further addto the complexityof

the three-dimensionaldistribution of sodiumand potassium. The situation for atomic oxygen
will be lesscomplexsincesolarradiationaccelerationis not important. Investigationsof current

andfuture sodiumobservationsfor Europathereforeprovidea new anddirect link to studying
the structureof this satelliteatmosphere,the escapeof its gases,andthe role of thesegasesin
supplyingadditionalplasmasourcesfor theplanetarymagnetosphere.

24



REFERENCES

Bagenal,F. (1985)PlasmaConditionsInsideof Io's Orbit: VoyagerMeasurements,JG____RR90,
311-324.

Bagenal,F. (1989)Toms-MagnetosphereCoupling,in Time Variable Phenomena in the Jovian

System, NASA SP-494, pp. 196-210.

Bagenal, F., Shemansky, D. E., McNutt Jr., R. L., Schreier, R. and Eviatar, A. (1992) The

Abundance of O ++ in the Jovian Magnetosphere, Geophys. Res. Letts. 19, 79-82.

Bergstralh, J. T., Matson, D. L. and Johnson, T. V. (1975) Sodium D-Line Emission from Io:

Synoptic Observations from Table Mountain Observatory, Astrophys. J. Lett. 19__55,L-131-
L135.

Bergstralh, J. T., Young, J. W., Matson, D. L. and Johnson, T. V. (1977) Sodium D-Line
Emission from Io: A Second Year of Synoptic Observation from Table Mountain
Observatory, Astrophys. J. Lett. 211., L51-L55.

Brown, M. E. (1995) Discovery of Sodium Around Europa BAAS 27, 1161.

Brown, M. E. (1996) Periodicities in the Io Plasma Torus, .J. Geophys. Res., in press.

Brown, M. E and Hill, R. X. (1995) Discovery of an Extended Sodium Corona Around Europa,
preprint, 1995.

Brown, R. A. (1981) The Jupiter Hot Plasma Torus: Observed Electron Temperature and Energy
Flow, A____A.J. 24___44,1072-1080.

Carlson, R. W. (1995) private communication.

Carlson, R. W., Matson, D. L. and Johnson, T. V. (1975) Electron Impact Ionization of Io's
Sodium Emission Cloud, GR____L_L2, 469-472.

Clarke, J. T., Ajello, J., Luhmann, J. Schneider, N. and Kanik, I. (1994) Hubble Space Telescope UV
Spectral Observations of Io Passing into Eclipse, J. Geophys. Res. 99, 8387-8402.

Combi, M. R. and Smyth, W. H. (1988a) Monte Carlo Particle Trajectory Models for Neutral
Cometary Gases. I. Models and Equations, A____J_.J. 32___2_7,1026-1043.

Combi, M. R. and Smyth, W. H. (1988b) Monte Carlo Particle Trajectory Models for Neutral

Cometary Gases. II. The Spatial Morphology of the Lyman -o_ Coma, A_Ag_.J., 327, 1044-
1059.

Connerney, J. E. P., Baron, R., Satoh, T. and Owens, T. (1993) Images of Excited H3 + at the
Foot of the Io Flux Tube in Jupiter's Atmosphere, Science 26___22,1035-1038.

Cummings, W. D., Dessler, A. J., Hill, T. W. (1980) Latitudinal Oscillations of Plasma within
the Io Torus, J. Geophys. Res. 85, 2108-2114.

Fang, T.-M., Smyth, W. H. and McElroy, M. B. (1976) The Distribution of Long-Lived Gas
Clouds Emitted by Satellites in the Outer Solar System, Planet. Space Sci. 25, 577-588.

25



Goldberg,B. A., Carlson,R.W., Matson,D. L., andJohnson,T. V. (1978)A New Asymmetry
in Io's SodiumCloud, BAA______SS,1_.00,579.

Goldberg,B. A., Yu. Mekler,R.W. Carlson,T. V. Johnson,andD. L. Matson(1980)Io's
SodiumEmissionCloudandtheVoyager1Encounter.Icarus44, 305-317. *

Goldreich, P. and Lynden-Bell, D. (1969) Io, a Jovian Unipolar Inductor, _ 156, 59-78.

Hall, D. T. Strobel, D. F., Feldman, P. D. McGrath, M. A. and Weaver, H. A. (1995) Detection
of an Oxygen Atmosphere on Jupiter's Moon Europa, Nature 373,677-679.

Ip, W.-H. (1990) Neutral Gas-Plasma Interaction: The Case of the Plasma Toms, Adv. Space
Res. 10, 15-23.

Macy, W. W., Jr. and Trafton, L. M. (1980) The Distribution of Sodium in Io's Cloud:
Implications. Icarus 41, 131-141.

Marconi, M. L. and Smyth, W. H. (1995) Iogenic Plasma Source: Corotational Lag, Energy, and
Transport in the Plasma Toms, BAA_____SS27, 1154.

Matson, D. L., Goldberg, B. A., Johnson, T. V. and Carlson R. W. (1978) Images of Io's Sodium
Cloud. Science 19___99,531-533.

Mendillo, M., Baumgardner, J., Flynn, B. and Hughes, W.J. (1990) The Extended Sodium
Nebula of Jupiter, Nature, 34__88,312.-314.

McGrath, M. A. (1988) Ion Bombardment of Io and Mercury, Ph.D. Thesis, Dept. of Astronomy,
University of Virginia.

Morgan, J.S. (1985a) Temporal and Spatial Variations in the Io Torus, Icarus 62, 389-414.

Morgan, J.S. (1985b) Models of the Io _l'orus, Icaru______fis63, 243-265.

Murcray, F. J. (1978) Observations of Io's Sodium Cloud, Ph. D. Thesis, Dept. of Physics,
Harvard University.

Murcray, F. J. and R. M. Goody (1978). Pictures of the Io Sodium Cloud. A p___.J. 22___fi,327-335.

Prang_, R., Rego, D., Southwood, D., Zarka, P., Miller, S. and Ip, W. (1996) Rapid Energy
Dissipation and Variability of the Io-Jupiter Electrodynamic Circuit, Nature 379, 323-
325. _

Pilcher, C. B., Smyth, W. H., Combi, M. R., and Fertel, J. H. (1984) Io's Sodium Directional

Features: Evidence for a Magnetospheric-Wind-Driven Gas Escape Mechanism,
287, 427-444.

Scherb, F. and Smyth, W. H. (1993) Variability of [O I] a300-._ Emission Near Io JGR 98,
18729-18736. -

Schneider, N. M. (1988) Sodium in Io's Extended Atmosphere. Ph.D. Thesis, Department of
Planetary Sciences, University of Arizona.

26



Schneider,N. M., Hunten,D. M., Wells,W. K., andTrafton,L. M. (1987)Eclipse
Measurementsof Io's SodiumAtmosphere,Science 23__._88,55-58.

Schneider, N. M., Hunten, D. M., Wells, W. K., Schultz, A. B. and Fink, U. (1991a) The
Structure of Io's Corona, _ 36___88,298-315.

Schneider, N. M. and Trauger, J. T. (1995) The Stucture of the Io Toms. A____.J.,45___00,450-462.

Schneider, N. M., Trauger, J. T., Wilson, J. K., Brown, D. I., Evans, R. W. and Shemansky, D. E.
(1991b) Molecular Origin of Io's Fast Sodium, Science 253., 1394-1397.

Sieveka, E. M. and Johnson, R. E. (1984) Ejection of Atoms and Molecules from Io by Plasma-
Ion Impact, _ 28___7_7,418-426.

Smyth, W. H. (1979) Io's Sodium Cloud: Explanation of the East-West Asymmetries. _,
234, 1148-1153.

Smyth, W. H. (1983) Io's Sodium Cloud: Explanation of the East-West Asymmetries. II. A__Ap.J_.J.
26__44,708-725.

Smyth, W. H. (1992) Neutral Cloud Distribution in the Jovian System, Adv. in Space Res.
12.337-346.

Smyth, W. H., and Combi, M. R. (1987a) Correlating East-West Asymmetries in the Jovian
Magnetosphere and the Io Sodium Cloud, Geophys. Res. Lett. 14__973-976.

Smyth, W. H. and Combi, M. R. (1987b) Time Variability of the Sodium Cloud, poster paper at
the international conference "Time-Variable Phenomena in the Jovian System," Flagstaff,
AZ August 25-27.

Smyth, W. H. and Combi, M. R. (1987c) Nature of Io's Atmosphere and its Interaction with
the Planetary Magnetosphere. BAAS, 19, 855.

Smyth, W. H., and Combi, M. R. (1988a) A General Model for Io's Neutral Gas Cloud. I.
Mathematical Description, Ap. J. Supp. 66, 397-411.

Smyth, W. H., and Combi, M. R. (1988b) A General Model for Io's Neutral Gas Cloud. II.
Application to the Sodium Cloud, _ 32____88,888-918.

Smyth, W. H. and Combi, M. R. (1991)The Sodium Zenocorona, J. Geophvs. Res., 96, 22711-
22727. - --

Smyth, W. H. and Combi, M. R. (1995) A Consistent Sodium Flux-Speed Distribution at Io's
Exobase, BAA________S27, 1155.

Smyth, W. H. and Combi, M. R. (1996) Io's Sodium Exosphere and Spatially Extended Cloud: A
Consistent Flux Speed Distribution, Icaru____fis,submitted.

Smyth, W. H. and Goldberg, B. A. (1996) Correlating System III Longitudinal Asymmetries in
the Jovian Magnetosphere and the Io Sodium Cloud, paper in preparation.

Smyth, W. H., and M. B. McElroy (1977) The Sodium and Hydrogen Gas Clouds of Io, Planet.
Space Sci. 25,415-431.

27



Smyth, W. H., and M. B. McElroy (1978) Io's Sodium Cloud: Comparison of Models and Two-
Dimensional Images, Astrophys J. 22___6_6,336-346.

Summers, M. E., Strobel, D. F., Yung, Y. L., Trauger, J. T. and Mills, F. (1989) The Structure of
Io's Thermal Corona and Implications for Atmospheric Escape. A_6p__.J. 34____3,468-480.

Wilson, J. K. and Schneider, N. M. (1995) Io's Sodium Directional Feature: Evidence for
Ionospheric Rip-off, BAAS 27, 1154.

28



.

.

.

4.

5.

6.

7.

°

SO 2 + e

SO 2 + e

SO 2 + O +

SO z + O ++ ___

SO 2 + S+ ._.>

SO 2 + S ++ ___

SO 2 + S +++ _ SO_

SO 2 + h v --_

Table 1

SO 2 Loss Processes in the Plasma Torus Near Io

Relative Rate

(%)

SO + O + e 72.55

S + O 2 + e 14.51

SO 2 + 2e 4.44

SO + + O + 2e 1.15

S + + 02 + 2e 0.33

SO + O + + 2e 0.03

SO_ + O 2.03

( +*SO z) + (O+) * 0.04

SO_ + S(3p) 0.01

(SO_)* + (S+) * 1.27

+ S++ (3 p)

SO 2 + S++ (ID)

SO 2 + S ++ (Is) 0.18

502 + S ++ (3Do)

SO2 + S +

SO + O 2.64

S -_- 02 0.80

SO 2 + e 0.02

Lifetime

(hr)

1.4

7.2

24

91

310

3300

52

2700

219000

82

580

40

130

6800
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Hubble

Table 2

Space Telescope Observations

March and May 1992

of Io

Faint Object Spectrograph (FOS) far- and near-UV spectra of Io
March 22, 1992

1.4" x 4.3" aperture centered on Io
1 G130H (1150-1600 ,_) spectrum
1 G190H (1575-2330/_) spectrum

Spatial and spectral resolution are determined by the size of the emitting region. Detection
of OI and SI emissions from Io and SO 2 gasabsorption bands from 1900-2300 .& in the
albedo, and ion emissions from the toms.

Good S/N: SI 1900, SIII 1713/1729. Problems with scattered light in the short-

wavelength data, which is low S/N for neutral eriaissions and probably only marginally
useful.

Faint Object Spectrograph (FOS) spatial scans of Io
March 20, 1992

1.4" x 4.3" aperture

2 scans of 8" length [supposed to be centered on Io]
1 with G130H (1150-1600A)
1 with G190H (1575-2330A)

These observations missed Io the first time due to failed guide star acquisition. They
were repeated on May 16, 1992 successfully (see below). However, these data have good
toms lines, and could yield some information on the radial distribution of toms emission,
ion density, etc.

High Resolution Spectrograph spatial scans of Io
March 18, 1992

2" x 2" aperture

2 scans of 8" length centered on Io
1 with G160M (1800-1840 A) centered on SI 1800/_ multiplet
1 with G160M (1280-1315 A) centered on SI/OI 1300 A multiplets

Some preliminary work has been done on these data and find that the 1800 _ emission is

peaked an a region of - 1.7" (in remarkable agreement with the FOS spectra results
mentioned above). Not clear whether emission is detected outside this region, but think

1820 is there. Can probably see the optical thickness effects. Data are noisy. Time-tagged
with 10 s integration times. 1300 will probably be useless due to Earth contamination, but
not clear. Line width of 1800 line can be used to see if the 1300/_ data makes sense.

FOS spatial scans of Io

May 16, 1992
1.4" x 4.3" aperture
2 scans of 8" length centered on Io
1 with G130H (1150-1600_)
1 with G190H (1575-2330A)

Will help determine spatial structure of the OI and SIIo UV emissions, and possibly of the
SO 2 gas absorption bands.
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Table 3

Atomic Oxygen and Sulfur Line Emission Rates

Species

Vacuum

Wavelength

(3,) Transition Array Multiplet

Emission Rate*

(cm3sec "1)

OI

OI

OI

OI

SI

SI

SI

1304 multiplet

1302.70

1304.86

1306.83

1356 multiplet

1355.60
1358.52

1359.79

6302.11

5578.89

1299multiplet

1295.65

1296.17

1302.33

1302.86

1303.10

1305.88

1256 multiplet

1247.10

1247.13

1247.15

1253.29

1253.32

1256.09

1389 multiplet

1381.55

1385.51

1388.43

1389.15

1392.59

1396.11

2s 2 2p 3 (4S0)3s

(J=l -----)2)

(J=l ---> 1)

0=1 --40)

2s 2 2p 3 (4S0)3s

(J=2 _ 2)

(J=2---@ 1)
(J=2 _ 0)

2s 2 2p 4 (1D--->3p)

2s 2 2p 4 (1S ---) 1D)

3s2 3p 3 (2p)4 s"

(J=2 ---ff2)

(J_ 1 --_ 2)

(J=2----> 1)

0=14-->1)

(J=0---ff 1)

(J= 1 ----_0)

3s 2 3p 3 (4S) 6d

(J=l --->2)

0=24-->2)

(J=3 ---->2)

(J=l ---->1)

(J=2-----> 1)

0=14-->0)

3s 1 3p 5

(J=l ---->2)

0=0--->1)

(J=2 _ 2)

(J=l ---->1)

(J=l ---->0)

(J:2-----) 1)

3S0

5S0

3p0

3D0

3p0

4.63 x I0 -I0

4.65 x 10 -10

4.66 x 10 -10

1.30 x 10 -10

1.30 x 10 -10

1.31 x 10 -10

2.99 x 10 -9

2.09 x 10 -9

6.26 x 10 -10

2.08 x 10 -10

3.53 x 10 -10

2.12 x 10 -10

2.83 x 10 -10

8.75 x 10 °10

5.39 x 10 -13

8.10 x 10 -12

4.53 x 10 "11

1.37 x 10 -1 !

4.12x 10 -11

5.67 x 10 -11

2.57 x 10 -12

3.48 x 10 -10

4.46 x 10 -12
- 1.39 x 10 -12

1.28 x 10 12

7.90 x 10 -12

33_



Table 3 (continued)

Species

Vacuum

Wavelength
(A) Transition Array Multiplet

SI 1429 multiplet 3s 2 3p 3 (4S)3d

1425.03 0=3 _ 2)

1425.19 0=24.__)2)

1425.22 (J=l 4---)2)

1433.28 (J=2 ----) 1)

1433.31 (J=l ----) 1)

1436.97 (J=l ----)0)

SI 1479 multiplet 3s 2 3p 3 (2D)4 s'

1474.00 0=3 _ 2)

1474.38 (J=2 --->2)

1474.57 (J=l 4---)2)

1483.04 (J=2 _ 1)

1483.23 (J=l _ 1)

1487.15 (J=l ----) 0)

SI 1814 multiplet 3s 2 3p 3 (4S) 4s

1807.31 (J=l 4---)2)

1820.34 (J=l _ 1)

1826.24 (J=l ----) 0)

SI 1900 multiplet 3s 2 3p 3 (4S) 4

1900.29 (J=2 --_ 2)

1914.70 (J=2 _ 1)

1921.23 (1=2 --ff 0)

SI 10820 multiplet 3s 2 3p 4 (1D---)3p)

10824.10 (J=2-----) 2)

1 i308.96 (J=2---ff 1)

11540.69 0=2 _ 0)

* Emission rate determined for an electron temperature of 60,000 K.

3D0

3D0

3sO

5S0

Emission Rate*

(cm3sec -1)

2.59 x 10 -9

4.63 x 10 -10

3.08 x 10 -11

2.35 x 10 -9

7.84 x 10 -10

3.26 x 10 -9

5.50 x 10 "10

9.85 x 10 -11

6.58 x 10 -12

5.01 x 10 -10

1.67 x 10 -10

6.95 x 10 -10

2.85 x 10 -9

2.91 x 10 -9

3.04 x 10 -9

8.73 x 10 -10

8.81 x 10 -10

8.85 x 10 -10

8.39 x 10 -9

8.47 x 10 -9

8.50 x 10 -9
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Table 4

GROUNDBASED OBSERVATIONS OF [O I] 6300 A EMISSION NEAR IO

Observational Program:

• PI: F. Scherb

• McMath-Pierce Telescope on Kitt Peak

• High-Resolution Solar-Stellar Spectrograph (resolving power -1.2 x 105)
• Integration Time: 10-15 minutes

• Viewing Aperture: 5.2 arcsec x 5.2 arcsec (centered on Io)

Synoptic

Year

1990-1992

1993

Observation

Number of

East Observations

12

10

Chronology:

Number of

West Observations

23

3

1994 82 82

Reference

Scherb & Smyth 1993a

(work in progress)

(work in progress)

Total 104 108

Future

Year

1996

Observational Program:

Program Elements

• Continue Synoptic Observations (June 23-July 7)
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TABLE 5. 1990 - 1993 OBSERVATIONS OF [O I] 6300 ,_ EMISSION NEAR IO

Date

1990 February 17

1991 February Ii

1991 May 5

1991 May 6

1992 February 29

1993 May 8

1993 May 19

1993 May 20

Start Time Io Phase

(UT) Anqle (deq)

0427 319.61

0437 321.01

0452 323.12

0502 324.52

0513 326.06

0702 341.38

Io System III

Anqle (deq)

133 29

137 93

144 89

149 53

154 63

205 21

0655 278.18 271.92

0708 280.02 277.94

0722 281.99 284.43

0733 283.54 289.54

0743 284.95 294.17

0754 286.50 299.27

0809 288.61 306.23

0820 290.16 311.33

0830 291.56 315.97

0424

0435

0446

0457

0509

0520

0621

0639

0441

0452

0503

0534

0545

0556

0607

0618

1023

1034

1046

1147

0955

0842

0858

226 58

228 13

229 67

231 22

232 91

234 45

243 02

245 55

71.70

73.26

74.82

79.23

80.80

82.36

83.93

85.49

90.28

91.83

93.52

102.12

174.38

243.45

245.72

49.88

51.84

54.08

56.47

58.71

60.82

63.06

66.57

78.22

80.89

0422

0436

0452

0509

0525

0540

0556

0621

0744

0803

122 88

127 98

133 08

138 18

143 75

148 85

177 15

185 51

78 39

83 48

88 56

102 89

107 97

113 05

118 14

123 22

247.81

252.92

258.48

286.76

292.22

34.88

42.27

221.78

228.28

235.71

243.61

251.03

258.00

265.42

277.03

315.55

324.37
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TABLE 6. 1994 OBSERVATIONS OF [O I] 6300 ._ EMISSION NEAR IO

Date

July 12

Start Time Io Phase Io System III

(UT) Anqle (deq) An_le (deq)

0457

0508

0519

0530

0541

0551

0607

0623

0639

0656

122 62

124 17

125 72

127 27

128 82

130 23

132 49

134 76

137 00

139 40

62.96

68.06

73.16

78.26

83.36

87 99

95.41

102.82

110.24

118.11

July 13 0344

0359

0415

0431

0447

0503

0519

0540

0601

316.63

318.76

321.02

323 28

325 54

327 80

330 06

333 02

335 99

335

342

349

357

4

ii

19

28

38

25

20

61

02

43

84

25

98

71

July 14 0326

0345

0401

0417

156

159

161

163

.62

.31

.58

.84

274

283

291

298

.82

.61

.02

.42

July 15 0431

0450

0506

0522

0539

0604

0620

0636

i0 01

12 68

14 92

17 17

19 55

23 06

25.31

27.55

251.14

259.96

267.38

274.81

282.70

294.30

301.73

309.16

in eclipse

in eclipse

in eclipse

in eclipse

July 16 O355 207.84 181.97

July 19 0335

0351

0407

0423

0438

0454

0510

0526

0542

0557

0613

0629

0645

95.

97

99

i01

104

106

108

ii0

113

115

117

119

121

16

40

65

9O

01

26

51

76

01

12

38

63

88

13

21

28

36

43

5O

57

63

72

79

87

94

i01

81

23

65

07

03

45

88

30

71

67

09

51

92
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Date

July 20

July 21

July 27

July 28

July 30

August 1

Start Time
(UT)

0414
0430
0446
0501
0517
0533
0549
0604
0620
0636
0651

0417
0433
0539

0349
0436
0452
0507
0523
0539
0555
0608

0304
0320
0342
0358
0413
0429
0445
0501
0541
0557
0614

0251
0311

0343
0416
0432
0448
0503
0519
0535
0551
0606
0622

Io Phase
Anqle (deq)

304 86

307 12

309 39

311 51

313 77

316 03

318 30

320 41

322 67

324 93

327 05

147.80

150.06

159.41

285.14

291.81

294.07

296.20

298.46

300.73

302.99

304.83

121.33

123 58

126 69

128 94

131 06

133 32

135 58

137 85

143.50

145.77

148.17

166.35

169.19

220.86

225.56

227.84

230.12

232.25

234.53

236.81

239.08

241.22

243.50

Io System III

Anqle (deq)

338 08

345 49

352 90

359 84

7 25

14 66

22 07

29 02

36 43

43 84

50 79

287.36

294.77

325,32

315.46

337 21

344 61

351 55

358 96

6 37

13 77

19 79

242.46

249.88

260 07

26'.48

27_ 43

281 84

289 25

296 66

315 19

322 59

330 46

130.34

139.59

48.02

63.26

70.66

78 05

84 98

92 37

99 77

107 16

114 09

121 49
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Date
Start Time

(UT)

Io Phase ....

Anqle (deg_

Io System III

Anqle (deq)

August

August

August 5

August 6

2 0306

0325

0341

0356

0412

0428

0444

0459

0515

0531

0546

0602

0304

0320

0335

0351

0407

0423

0438

0454

0510

0526

0541

0557

0251

0307

0323

0339

0403

0433

0525

0541

0254

0309

0325

0341

0357

0413

0428

0444

58

61

63

65

68

70

72

74

76

79

81

83

262

264

266

269

271

273

275

278

280

282

284

286

.85

52

76

86

ii

35

59

70

94

19

30

54

43

70

83

ii

38

65

78

O5

31

58

71

98

307.49

309.75

312.01

314.27

317.66

321.88

329.21

331.46

150

152

154

157

159

161

163

166

41

54

8O

07

34

61

74

01

338.03

346.85

354.28

1.25

8 67

16 i0

23 53

30 49

37 91

45 34

52 30

59 72

283 62

291 01

297 95

305 35

312 75

320 15

327 09

334.49

341.89

349.23

356.23

3.64

171.43

178.84

186.25

193.67

204.79

218.69

242.79

250.21

120 69

127 63

135 03

142 43

149 83

157 23

164 17

171 57
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Table 7

1987 Io Sodium Emission Spectra

Decimal Io
UT Midpoint Orbital
Date (hrs) Longitude

from Catalina Observatory

Io
Magnetic Slit
Longitude Orientation

232 13 Oct 5.38 40.2 84.7 EAV
236 13 Oct 7.48 58.0 143.1 F_/W
237 13 Oct 7.67 59.6 148.2 E/W
238 13 Oct 7.88 61.4 154.2 F/W
239 13 Oct 8.07 63.0 159.3 FJW
247 13 Oct 9.77 77.4 206.6 FJW
248 13 Oct 9.97 79.1 212.1 E/W
249 13 Oct 10.17 80.8 217.7 F_/W
250 13 Oct 10.35 82.3 222.8 E/W
258 13 Oct 11.67 93.5 259.4 F_/W
259 13 Oct 11.83 - 94.9 264.0 E/W

338 15 Oct 5.18 85.9 333.1 F_/W
339 15 Oct 5.37 87.4 338.2 E/W
340 15 Oct 5.57 89.1 343.8 E/W
341 15 Oct 5.78 91.0 349.8 FJW
350 15 Oct 6.47 96.8 8.8 E/W
356 15 Oct 6.98 101.2 23.2 E/W
358 15 Oct 7.32 104.0 32.4 E/W
360 15 Oct 7.58 106.3 39.8 EAV
361 15 Oct 7.78 107.9 45.4 E/W
371 15 Oct 9.00 118.3 79.2 F_lW
372 15 Oct 9.18 119.8 84.3 E/W
378 15 Oct 9.58 123.2 95.4 EAV
379 15 Oct 9.77 124.8 100.5 E/W
382 15 Oct 10.15 128.0 111.2 F_/W
383 15 Oct 10.42 130.3 118.6 F_IW
387 15 Oct 10.68 132.6 126.0 F_IW
388 15 Oct 11.07 135.8 136.6 E/W
389 15 Oct 11.30 137.8 143.1 F_JW
390 15 Oct 11.52 139.6 149.2 E/W
394 15 Oct 11.80 142.0 157.0 EAV
397 15 Oct 12.37 146.8 172.8 E/W

466 16 Oct 3.68 276.7 29.3 E/W
474 16 Oct 4.53 283.9 52.9 E/W
475 16 Oct 4.70 285.3 57.5 F_/W
476 16 Oct 4.90 287.0 63.1 E/W
477 16 Oct 5.08 288.5 68.2 F_/W
482 16 Oct 5.43 291.5 77.9 E/W
488 16 Oct 6.13 297.4 97.4 F_/W
489 16 Oct 6.32 299.0 102.5 E/W
490 16 Oct 6.50 300.6 107.6 E/W
491 16 Oct 6.87 303.7 117.8 E/W
496 16 Oct 7.07 305.4 123.3 E/W
497 16 Oct 7.25 306.9 128.4 F_JW
498 16 Oct 7.43 308.5 133.5 E/W
499 16 Oct 7.60 309.9 138.1 EAV
503 16 Oct 7.92 312.6 146.9 N/S
504 16 Oct 8.15 314.6 153.4 F/W
509 16 Oct 8.35 316.3 159.0 F_/W
510 16 Oct 8.85 320.5 172.9 E/W
514 16 Oct 9.18 323.3 182.2 E/W
515 16 Oct 9.22 323.6 183.1 F/W

Slit
Location

Io
Io
N
Io
S
Io
N
Io
S
Io
Io

Io

N
Io
S
Io
Io
N
Io
S
Io
N
Io
S
Io
N
Io
Io
S
N
Io
Io

Io

Io
N
Io
S
Io
Io
N
Io
S
Io
N
Io
S
Io
Io
Io
N
Io
Io
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516
520
521
524
525
526
530
533
534
535
536

Table 7 (Continued)

16 Oct 9.42 325.3 188.6 E/W
16 Oct 9.75 328.1 197.9 E/W
16 Oct 9.93 329.7 203.0 E/W
16 Oct 10.28 332.7 212.7 FJW
16 Oct 10.47 334.2 217.8 FJW
16 Oct 10.68 336.1 223.8 E/W
16 Oct 11.47 342.7 245.6 N/S
16 Oct 11.75 345.1 253.5 E/W
16 Oct 11.95 346.8 259.0 F/W
16 Oct 12.13 348.4 264.1 F/W
16 Oct 12.45 351.1 272.9 E/W

562 17 Oct 3.92 122.3 342.7 FJW
565 17 Oct 4.45 126.9 357.6 FJW
566 1"7Oct 4.63 128.4 2.7 E/W
567 17 Oct 4.82 130.0 7.8 EIW
571 17 Oct 5.10 132.4 15.6 N/S
574 17 Oct 5.52 135.9 27.2 E/W
575 17 Oct 5.70 137.5 32,3 FJW
579 17 Oct 6.05 140.4 42.0 FJW
580 17 Oct 6.25 142.1 47.6 E/W
581 17 Oct 6.43 143.7 52.7 E/W
583 17 Oct 6.68 145.8 59.6 E/W
588 17 Oct 6.98 148.4 68.0 E/W
589 17 Oct 7.27 150.8 75.8 EAV
591 17 Oct 7.48 152.6 81.9 N/S
595 17 Oct 7.95 156.6 94.8 E/W
597 17 Oct 8.25 159.1 103.2 E/W
598 17 Oct 8.43 160.7 108.3 E/W
600 17 Oct 8.72 163.1 116.2 E/W
605 17 Oct 9.03 165.8 125.0 E/W
626 17 Oct 11.90 190.1 204.6 F_IW
627 17 Oct 12.13 192.1 211.1 E/W
628 17 Oct 12.35 193.9 217.1 FJW
629 17 Oct 12.55 195.6 222.7 E/W

18 Oct 3.95 326.1 290.8
18 Oct 4.17 328.0 296.9
18 Oct 4.37 329.7 302.4
18 Oct 4.53 331.1 307.0
18 Oct 4.82 333.5 314.9
18 Oct 5.30 337.6 328.4
18 Oct 5.52 339.4 334.4
18 Oct 5.68 340.8 339.0
18 Oct 5.90 342.7 345.0
18 Oct 6.33 346.3 357.1
18 Oct 6.63 348.9 5.4
18 Oct 6.80 350.3 10.0
18 Oct 9.12 10.0 74.4
18 Oct 9.32 11.7 80.0
18 Oct 9.57 13.8 86.9
18 Oct 10.57 22.3 ! 14.7
18 Oct 10.77 24.0 120.3
18 Oct 11.00 25.9 126.8
18 Oct 11.20 27.6 132.3
18 Oct 11.50 30.2 140.7
18 Oct 11.75 32.3 147.6
18 Oct 11.93 33.9 152.7
18 Oct 12.12 35.4 157.8
18 Oct 12.30 37.0 162.9

663
664
665
666
669
674
675
676
677
682
685
686
701
702
704
709
710
712
713
716
719
720
721
722
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E/W
E/W
EAV
E/W
N/S
E/W
E/W

E/W
EtW
N/S
E/W
FJW
E/W
E/W
E/W
FJW
E/W
E/W
E/W
N/S
E/W
E/W
ErvV
EAV

S
Io
N
Io
Io
S
Io
Io
Io
Io
Io

Io

N
Io
S
Io
Io
N
Io
S
Io
N
Io
S
Io
Io
N
Io
S
Io
Io
Io
Io
Io

Io

N
Io
S
Io
Io
N
Io
S
Io
Io
Io
Io
Io
Io
Io
N
Io
S
Io
Io
N
Io
S



Table 8

GROUNDBASED OBSERVATIONS OF SODIUM D-LINE EMISSIONS NEAR IO

Observational Program:

• Observer: N. M. Schneider

• Catalina Observatory

• High-Resolution LPL Echelle Spectrograph/CCD (-3 km s -1 FWHM)
• Integration Time: 10 minutes

• Viewing Slit: + 40 arcsec east-west (centered on Io)

• Io Emission Spectra Were Acquired in October 1987

• All D1 And D2 Observations Have Been Reduced

Observation

Date

13 Oct

15 Oct

16 Oct

17 Oct

18 Oct

Chronology:

Number of

East Observations

11

21

0

19

12

Number of

West Observations

0

0

31

4

12

Total No. of

Observations

11

21

31

23

24

Total 63 47 110

h@



Spatial Region

I. Corona

II. Cloud

IlL Directional Feature

Table 9. Summary of Modeling Studies for the Spatial Distribution of Sodium Near Io and its Oi'bit

Sodium Source Sodium Lifetime Orbital Dynamics

Mono-energetic
Atom Ejection

Topic Studied Speed

(kms "1)

e-w intensity asymmetry b 2.0-2.6

e-w intensity asymmetry b 2.6

e-w intensity asymmetry b

column-density profile c 2.6

column-density profile c

column-density profile c

column-density profile c 3.0

column-density profile e

general spatial nature 3.5

general spatial nature

evolution and 2-D nature 2, 3

1-D brighmess morphology f

2-D brightness morphology h 2.6, 3

e-w orbital asym.rr_tnyJ 2.6

radial and vertical structure (3,5,7.9,11,13) k

I-D brightness morphology

e-w orbital asymmetry 2.6

2-D brightness morphology 2.6

spacetime structure m -20

collision cross sections

nearer zenocorona structure

spacetime structure

Maxwell-Boltzman
Flux Distribution

T Vpeak

(K) _ ,

460; 12.300 0.71; 3.65 7/3

3

1000 1.04

1500 1.28

Cascade Flux Speed Distribution

Vb Vpeak Vmax

(kin s"l ) (kin s-l ) (kin s -l)

<0.4:2.2 <0.5; 2.9 46.6

5000 2.3

3 4 4

31 41 41 .ol

3 On

-20_ 12P

20-2 10-20q

a regarding Io's exobase. L=leading, l=inner, T=trailing, O=outer.

b eust-west intensity asymmetry data of Bergstralh et al. (1975, 1977).

c early (i.e., partial) Na eclipse data set from Schneider et al. (I987).

d used cut-off energy: Emin _<E < _; Emin = k Texobase; Texobase=1500 K (i.e. a 1.04 km s"I cut-off speed).

e complete eclipse data set from Schneider (1988) and Schneider et al. (1991).

f two sodium cloud images of Matson et aI. (1978).

g I-L hemisphere centered 30 ° longitude (0 ° longitude facing Jupiter, 90 ° longitude is the leading point in the orbit).

h fifty-six sodium cloud images of Murcmy (1978) and Mumray and Goody (1978).

Jupiter's Radiation

Angular Plasma Toms Lifetime Io's Mass Mass Pressure

Naturea Description (hrs) Included Included Included Reference

isotropic cut-off 20 yes yes yes Smyth 1983

isotropic 2-D variable yes yes yes Smyth and Combi 1987a

band, isotropic 2-D variable yes yes yes Smyth and Combi i988

isotrepic 2-D varialbe yes yes yes Smyth and Combi 1987b,c

isotropic cut-off 3, _ yes no no McGrath 1988

isotropic uniform _ yes no no Summers et al. 1989

isotropic uniform ? yes no no Ip 1990

isotropic uniform _ yes no no Schneider et al. 199I

isotropic uniform 30, 47 yes yes no Carlson et al. 1975

isotropic long-lived limit no yes no Fang et al. 1976

isotropic cut-off 50 yes yes no Smyth and McElroy 1977

I-L hnmisphereg uniform 28 yes yes no Matson et al. 1978

I, I-T hemisphere i cut-off 15, 20 yes yes no Smyth and McElroy 1978

I-T hemisphere i cut-off 20 yes yes yes Smyth 1979

I hemisphere uniform 56 no yes no Macy and Trafton 1980

I-L hemisphere I 1-D variable yes yes no Goldberg et al. 1980

I hemisphere cut-off 20 yes yes yes Smyth 1983

band, isotropic 2-D variable yes yes yes Smyth and Combi I988

O, -J_ to lo's motion 2-D variable yes yes yes Pilcher et al. 1984

-3_ to lo's motion Sieveka and Johnson 1984

tangential + isotropic photoionization -400 hr no no; Sun yes yes Smyth and Combi 1991

tangential + isotropic none _ no yes no Wilson and Schneider 1995

i I-T hemisphere centered on -40 ° longitude.

J east-west orbital asymmetry data of Goldberg et al. (1978).

k velocity components equally weighted.

1 distribution parameters from Carlson (1995); I-L hemisphere centered on 45 ° longitude.

m from images of Pilcher et al. (1984).

n used cut-off energy of 0.5 ev (i.e., Na cut-off speed of 2.0 km s" I ).

P tangential speed to lo's orbit at Io position + most probable speed of an isotropic Maxwell-Boltzmann.

q tangential speed to lo's orbit at Io position + most probable speed of an isotropic Gaussian.
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Table 10. Physical and Orbital Parameters for the Galilean Satellites and Jupiter

Radius (km)

GM Value (km 3 s -2)

Secondary Body/Primary Body Mass Ratio

Mass b (i 022 kg)

Mass Density b (g cm -3)

Surface Gravity (cm s-2)

Two-Body Escape Speed (krn s -1)

Lagrange Sphere Radius c (kin, [radiusd])

Orbital Period (d, [hr], <yr>)

Orbital Semimajor Axis (10 5 km, [Radiusd])

Orbital Speed (km s-l)

Orbital Inclination to Primary Body Equator (deg)

System III Period (hr, [ang. freq. in deg/hr])

System III Corotation Speed (km s-1)

Corotational Electric Field e at Satellite Orbit (mV m -l)

Corotational Electric Field e at Satellite (mV m -l)

Maximun Potential Across the Satellite (kV)

Primary Body Gravitational Acceleration (cm s-2)

Na Solar Radiation Acceleration f (cm s-2, [% primaryg])

K Solar Radiation Accelerationf (cm s-2, [% primaryg])

In Euro.p__ Ganymede Callisto

1815 1569 2631 2400 71398 a

5961 3201 9887 7181 126686537

4.705x10 -5 2.527x10 -5 7.804x10 -5 5.668x10 -5 9.547907x10 -4

8.934 4.798 14.82 10.76 189877.9

3.567 2.965 1.942 1.859 1.33 a

181.0 130.0 142.8 124.7 2485.2

2.563 2.020 2.741 2.446 59.57

10,550 [5.8 i] 13,650 [8.70] 31,700 [12.05] 50,150 [20.90] 53,140,440 [744.28]

1.769137786 [42.46] 3.551181041 [85.23] 7.15455296 [171.71] 16.6890184 [400.54] <11.86223>

4.216 [5.90] 6.709 [9.40] 10.70 [14.99] 18.83 [26.37] 7783.284 [1118.29]

17.33 13.74 10.88 8.205 13.064

0.04 0.47 0.21 0.51 1.305

12.9526 [27.79] 11.2330 [32.05] 10.5338 [34.18] 10.1771 [35.37]

56.81 104.2 177.3 322.9

154 60.9 23.9 7.73

118 53.8 22.5 7.53

428 169 119 36.2

71.27 28.15 11.07 3.573

1.25 [1.76] 1.10 [3.90] 0.961 [8.69] 0.787 [22.0]

1.23 [1.73] 1.22 [4.34] 1.20 [10.9] 1.17 [32.6]

9.92492 [36.27]

a Equatorial radius; polar radius is smaller (93.5%) and the mass density reflects this non-spherical shape.

b Value of the Constant of Gravity adopted: G=6.672x10 -20 km 3 kg -1 s-2.

c Average value for the L1 and L2 colinear Lagrange points.

d "radius" denotes radius of the secondary (smaller) body; "Radius" denotes radius of the primary (larger) body.

e Based on an 04 model main magnetic-dipole moment of 4.28 gauss (Rj) 3, where Rj is the equatorial radius of Jupiter.

f Maximum solar radiation acceleration calculated for the satellite at the elongation point of its orbit.

g Percent based on the primary-body gravitational acceleration evaluated at the orbit of the secondary body.
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FIGURE CAPTIONS

Figure 1. SO2 Lifetime at Io's Location in the Plasma Torus. The lifetime, given in units of

hours, is calculated for Voyager 1 plasma conditions with a tilted-offset dipole planetary
magnetic field, a nominal east-west electric field, and an inherently asymmetric plasma torus in
System III longitude similar to that observed by Morgan (1985 a,b).

Figure 2. SO2 + Production Rate in the Plasma Torus. The L-shell profile for the production

rate of SO2 + from SO2 is shown for electron impact ionization (solid line) and for O + charge
exchange (dashed-dot line) for an Io geocentric phase angle of 270 ° and an Io System III

longitude angle of 230 °. A SO2 source strength of 8.9 x 1027 molecules s -1 and an isotropic flux
from the Io exobase (2600 km radius) with an initial speed of 2.6 km s -1 were assumed.

Figure 3. SO2 + Production Rate in the Plasma Torus. The L-shell profile for the production

rate of SO2 + from SO2 is shown for electron impact ionization (solid line) and for O + charge
exchange (dashed-dot line) for an Io geocentric phase angle of 90 ° and an Io System III longitude

angle of 300 °. A SO2 source strength of 8.9 x 1027 molecules s-1 and an isotropic flux from the
Io exobase (2600 km radius) with an initial speed of 2.6 km s -1 were assumed.

Figure 4. Abundance of the SO2 + Ion in the Plasma Torus. Three L-shell profiles for the

abundance of SO2 + are shown by the solid lines. These profiles were constructed by taking the

product of the same SO2 + production rate profile (shape shown by the dashed line, but absolute
value enhanced by a factor of 1000 to ease the comparison) with different residence lifetimes for

SO2 +. The instantaneous production rate was calculated using the single-species SO2 neutral

cloud with a source rate of 8.9 x 1027 sec -1 (Scherb and Smyth 1993) for Io at eastern elongation
and at a System III longitude of 200 °. The SO2 + residence lifetime used includes electron
recombination (which dominates for L < 5.2) and electron impact dissociation which dominates

for L > 5.2), the latter which is not known and has been approximated by the electron impact
dissociation lifetime for SO2. The abundance profile extending from L-shell values of about 4 to

7 is for the minimum residence lifetime of SO2 + in the centrifugal plane. The other two
abundance profiles are ten times (10 X) and one hundred times (100 X) the minimum abundance
profile, but are shown only for L < 5.4, inside of which the plasma torus is confined -+ 0.11

planetary radii of the centrifugal equator (because of a rapid decrease in the ion temperature) and

inside of which the SO2 + ion at 200 ° System III longitude is mostly above or below the plasma
and hence has a much larger effective residence lifetime. A rough estimate shows that the

scaling factor for the minimum abundance profile may be in the range of-20-110 which is large

enough to match or exceed the SO2 + abundance (+ symbol) estimated from PLS data acquired
by the Voyager 1, given the uncertainties in the absolute radial position as determined by the

east-west electric field. This suggests that the SO2 + abundance measured by Voyager 1 could be

produced by the escape of SO2 from Io if the residence time of SO2 + in the torus were -100 hr.

Figure 5. Atomic Oxygen 1304 A Emission Near Io. A model calculation for the 1304
brightness in Rayleighs is shown near Io for an isotropic oxygen source of 3.2 x 1027 atoms s-1

ejected at 2.6 km s -1 from an assumed satellite exobase of 2600 km in radius. Io has a geocentric

phase angle of 90 ° (i.e., at eastern elongation) and an Io System III longitude of 50 °. On the sky
viewing plane, the horizontal axis (x) is the distance from Io along the projected Io-Jupiter line,
and the vertical axis (z) is the projected distance from Io above and below the satellite orbital
plane. Io is shown to scale by the filled circle located at (0,0).
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Figure 6. 1990-1993Observations of [O I] 6300 _ Emissions Near Io, The [O I] 6300 .A

emission brightnesses for the 48 observations are shown as a function of the Io System III
longitude angle. The brighter emissions occur for the data when Io is west (+ symbols) of Jupiter
rather than east (x symbols) of Jupiter.

Figure 7. Angular Distribution of the [O I] 6300 A Emission Data Near Io. The angular
distributions in Io System III longitude of the 1990-1993 observations and the 1994 observations

are shown separately and are divided into observations for Io east of Jupiter (x symbol) and for
Io west of Jupiter (+ symbol).
g

Figure 8. Voigt Fit to the Solar Spectrum. The solar spectrum, the excellent fit to the solar
spectrum using the new Voigt fitting program of F. Scherb, and the very small residue of the
Voigt fit are all shown for wavelengths near 6300 ,_. The line center of the emission line
(6300.30 A) for no Doppler shift is shown above the profile by the "0", with the arrows about

this position indicating a Doppler shift range of + 0.5 _ which is a typical (but not the maximum)
range for the motion of the Io emission feature because of Doppler motions.

Figure 9. Observation of the [O I] 6300 A Emission from Io. The small Io and terrestrial [O
I] 6300 ,_ emission features measured on May 5, 1991 using the solar-stellar spectrograph on the
McMath-Pierce telescope at Kitt Peak are indicated above the large Io reflected solar spectrum

along with the excellent Voigt fit to the total spectrum and the very small residue of the Voigt fit.

Figure 10. Observed Variability of the 6300 A Emission Near Io. The observed emission

brightness is shown as a function of Io System III longitude when Io is west of Jupiter. The
brightness as seen in the 5.2 arcsec x 5.5 arcsec aperture centered on Io is referencedto the disk
area of Io.

Figure 11. Observed Variability of the 6300 ._ Emission Near Io. The observed emission

brightness is shown as a function of Io System III longitude when Io is east of Jupiter. The
brightness as seen in the 5.2 arcsec x 5.5 arcsec aperture centered on Io is referenced to the disk
area of Io.

Figure 12. Calculated Variability of the 6300 ._ Emission at Io's Position in the Plasma
Torus. The 6300 A emission brightness, in relative units, is shown as a function of the satellite

geocentric phase angle and the Io System III longitude angle. The plasma toms description
adopted in the calculation is inherently symmetric in System III longitude and is for an offset and

tilted dipole magnetic field in the presence of a nominal (e =0.025) east-west electric field.

Figure 13. Calculated Lifetime for SO2 at Io's Position in the Plasma Torus. The electron

impact dissociation lifetime, in units of hours, is shown as a function of the satellite geocentric
phase angle and the Io System III longitude angle. The plasma toms description is the same as
adopted in Figure 12.

Figure 14. Spatial and Spectral Information for Sodium Near Io. Three data products
derived from one of the sodium emission observations (namely, FR87I 340 in Table 7) acquired
in 1987 by N. M. Schneider along an east-west oriented slit centered on Io are shown for both
the D 1 and D2 emission lines.

Figure 15. Variation of the Sodium D2 Brightness Profile Near Io for the 1987 Emission

Data Set. The spatial profiles of the brightness for 48 observations are positioned about the
circle in accordance with their measured Io geocentric phase angles. Io's location is where the
dotted circle cuts each profile and the intensity (kR) is plotted vertically.
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Figure 16. Variation of the Sodium D2 Velocity Centroid for the Line Profile for the 1987
Emission Data Set. The spatial profiles of the velocity centroid for 48 observations are

positioned about the circle in accordance with their measured Io geocentric phase angles. The
centroid velocity of the line profile is zero (i.e. relative to Io's projected motion) where the dotted

circle cuts each spatial profile and the velocity (km s-1) of the centroid is plotted vertically.

Figure 17. A Molecular-Ion Jet Source for High Speed Sodium. A gray-scale image
generated by the molecular-ion jet source model for high speed sodium is shown. The model

corresponds to image number w32339 taken by Schneider et al. (1991b). Models of other
images in the sequence reproduce the changing morphology of the jet. For this case Io,

indicated by the small dot on the right, was at a geocentric orbital phase angle of 209 degrees and
had an Io System III longitude angle of 297 degrees. The black circle at the center represents
Jupiter.
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SO 2 LIFETIME IN THE IO PLASMA TORUS
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1990-1993 OBSERVATIONS OF [O I] 6300 A EMISSION NEAR IO
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ABSTRACT

#

A data set, composed of different groundbased observations for Io's sodium corona and

spatially extended sodium cloud and covering the spatial range from Io's nominal exobase of 1.4

satellite radii to east-west distances from Io of +100 satellite radii (Rio), is used to investigate the

velocity distribution of sodium at the exobase. The data set is composed of the novel 1985 eclipse

measurements of Schneider et al. (1991) acquired from -1.4 to -10 Rio from Io, the 1985 east-

west emission data of Schneider et al. (1991) acquired from ~4 to -40 Rio from Io, and sodium

cloud image data acquired from ~10 to -100 Rio from Io by a number of different observers in the

1976 to 1983 time frame. A one-dimensional east-west profile that contains Io is constructed from

the data set and is analyzed using the sodium cloud model of Smyth and Combi (1988a,b). When

the directional feature in the trailing cloud is either north or south of this east-west line (i.e., not at

the null condition), an isotropic modified [incomplete (o_=7/3) collisional cascade] sputtering flux

speed distribution at the satellite exobase with a peak at 0.5 km sec-1 provides an excellent fit to the

data set for a sodium source of 1.7 x 1026 atoms sec-1. In particular, the model calculation

reproduces (1) the essentially symmetric column density distributions exhibited by the eclipse

measurements about Io within the Lagrange sphere radius (5.85 Rio, i.e., the gravitational grasp of

the satellite), (2) the change in the slope of the column density observed just beyond the Lagrange

sphere radius in the east-west profile of the forward cloud, but not in the trailing cloud, and (3) the

distinctly different east-west brightness profiles exhibited by the forward and trailing clouds in the

emission data at the more distant (-+20-100 Rio) portions of the cloud. In contrast, the speed

dispersion at the exobase for either an isotropic Maxwell-Boltzmann flux speed distribution or an

isotropic classical (or=3) sputtering flux speed distribution (which has a higher velocity-tail

population than the Maxwell-Boltzmann, but not as high as the incomplete collisional cascade

sputtering distribution) is shown to be inadequate to fit the data set. To fit the enhanced trailing

east-west profile observed when the directional feature is at the null conditi9n ' an additional



enhancedhigh-speed(-15-20 km sec-1)sodiumpopulationis requiredwhich is nonisotropically

ejectedfrom thesatelliteexobasesoasto preferentiallypopulatethetrailing cloud. The needfor

sucha nonisotropichigh-speedpopulationof sodium is essentiallyconsistentwith the earlier

modelinganalysisof thedirectionalfeatures(Pilcheret al. 1984), the more recent medium-velocity

component required in modeling the sodium zenocorona (Smyth and Combi 1991; Flynn et all

1992), and the very recent modeling of the directional feature reported by Wilson and Schneider

(1995). A complete sodium source rate speed distribution function at Io's exobase from 0-100 km

sec -I is then constructed by combining the isotropic modified [incomplete (cz=7/3) collisional

cascade] sputtering flux speed distribution, the nonisotropic directional feature (lower-velocity

zenocorona) source (-15-20 km sec-1), and the higher-speed (-20-100 km sec-1) charge-exchange

source required to simulate the sodium zenocorona far from Jupiter.
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1. INTRODUCTION

Atomic sodium in the Jupiter system originating from a satellite source at Io has been

observed from groundbased facilities in the D1 (5889.95.A,) and D2 ( 5895.92 A,) emission lines

during the past twenty-five years. Using an observing slit, the sodium emission which is excited

by solar resonance scattering was first discovery in 1972 by Brown (1974) very near Io where its

intensity is brightest [- many 10's of kiloRaleighs (kR)] and where the sodium density is

dominated by low-speed (-2 km sec -1 or less) ballistic atom orbits in the satellite "corona". By

occulting the bright region near Io, image observations (Murcray 1978; Murcray and Goody 1978;

Matson et al. 1978) were first acquired in 1976 and 1977 for fainter (- few to 0.5 kR) sodium

more distant from Io but still near its circular orbit (radius of 5.9 Jupiter radii) about the planet and

revealed the presence of a predominant "forward cloud" and a less spatially extensive "trailing

cloud" that moved with the satellite. This sodium has been characterized primarily by a source of

low-speed (-2.6-4 km sec -1) atoms that have sufficient energy to just escape from Io with an

excess velocity of only -1 km sec -1 (or so) and thereby remain gravitationally bound to Jupiter

fairly near the satellite orbit. Additional observations (Pilcher et al. 1984; Goldberg et al. 1984)

of even fainter (-1 to 0.2 kR) sodium in the early 1980's discovered a "directional feature" attached

to Io in the trailing cloud that oscillated north and south about the satellite plane with a phase and

period determined by the Io System III longitude angle. This sodium source was characterized by

atoms with speeds -20 km sec -1 ejected nonisotropically from the satellite so as to populate the

trailing cloud and the circump!anetary space at larger radial distances beyond Io's orbit. From

earlier slit measurements (Trafton and Macy 1978) in 1974, fainter (-30 Rayleighs) sodium

emissions well beyond Io's orbit had been observed at a radial distance of -60 planetary radii,

while from more recent images (Mendillo et al. 1990), very faint (-1 Rayleigh) sodium emissions

were observed at radial distances of -400-500 planetary radii. Sodium at these larger radial

distances is called the "magneto-nebula" or "sodium zenocorona" and is thought to be populated

primarily by an nonisotropic charge-exchange source of high speed (-15-100 km sec-l) atoms at Io
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with velocity skewedin theforwarddirectionof corotationalplasmamotion pastthesatellite,and

secondarilyby a narrow forward sodiumjet producedby a spatially distributedmolecular ion

source(Wilson and Schneider1994). Most of this sodiumescapesthe Jupitersystem,forms a,

sodium pause in the sunwarddirection at -2300 planetary radii becauseof solar radiation

accelleration,andis eventuallylostby photoionizationto thesolarwind (SmythandCombi 1991).i

The observationsof sodium emissionson many different spatial scalesin the Jupiter

systemthusindicatethat its atomicsourceat Io'sexobasemust havea wide dispersion_ofspeeds.

Modeling of theseobservationshasin thepastbeenmostlyundertakenseparatelyfor only oneof

thesespatialregionsat atime. Althoughthehighervelocitydispersionsfor thesodiumzenocorona

may be reasonablywell understoodbecauseof its large spatial structure and the lack of any

significantsodiumlifetime impactof themagnetosphere,aconsistentsourcefor theslowersodium

in Io's coronaandin theforward andtrailing cloudsnearits orbit hasnot beenestablished.The

recentdeterminationof thesodiumspatialprofile in theIo coronaobtainedfrom thegroundbased

eclipsedataof Schneider(1988; Schneideret al. 1987, 1991) coupled with earlier emission

observations, however, now provides a viable observational base from which it is possible to

pursue the nature of this slower sodium. The investigation of a consistent exobase sodium source

for Io's corona and the forward and trailing clouds near its orbit is therefore undertaken in this

paper. A consistent flux speed distribution at the exobase is determined, and the corresponding

sky-plane spatial distribution of sodium near Io is presented. Sodium source information obtained

from previous modeling analysis of Io's corona and the forward and trailing clouds is first

summarized in section 2. The observational data base to be investigated in this paper is presented

in section 3. Modeling of an east-west spatial profile determined from this observational data base

is undertaken in section 4. Discussion and conclusions are presented in section 5.

2. EARLIER SODIUM MODELING

The major modeling analysis studies for the spatial distribution of sodium near Io and its

orbit are summarized in Table 1. The summary is divided into three observed spatial regions: (1)
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theIo coronalocatedwithin thesatelliteLagrangesphere(averageradiusof 5.81Rioor -3 arcsec),

(2) the neutralcloud locatedbeyondtheLagrangesphereandnearIo's orbit, and(3) the north-

southoscillatingdirectionalfeatures,observedto trail Io in its orbit. Modelinganalysisstudiesfor

the Io coronaare, furthermore,subdividedinto early observationsof the averageintensity in a 8

arcsecx 3 arcsecslit centeredon Io reportedby Bergstralhet al. (1975, 1977) that indicated an

east-west intensity asymmetry of-1.25 and later observations for a one-dimensional column

density profiles within the Lagrange sphere reported by Schneider et aI. {1987, 1991).

2.1 Corona: East-West Intensity Asymmetry

In Table 1, the early studies of Smyth (1983) for sodium atoms ejected monoenergetically

from Io's exobase established that small scale structures in the D-line intensity profile observed as

a function of the Io geocentric phase angle (Bergstralh et al. 1975, 1977) could arise from

modulation of the atoms' escape rate from Io.caused by the action of solar radiation acceleration in

the D-lines. These modulations occur primarily for exobase speeds near 2.0 km sec -1 and 2.1 km

sec -1, which are near the escape-speed threshold of the Lagrange sphere. Later studies of Smyth

and Combi (1987a) showed that the main reason for the east-west intensity asymmetry was,

however, an east-west electric field which altered the plasma properties at Io's orbit so as to

increase the sodium lifetime and hence sodium abundance when Io was preferentially east of

Jupiter. More complex modeling studies of Smyth and Combi (1988b) constrained the flux

velocity dispersion for sodium at Io's exobase by simultaneously fitting the average east-west

intensity asymmetry and also the general spatial morphology of the forward sodium cloud, located

on a much larger spatial scale well beyond the Lagrange sphere. These studies showed that the

sodium ejection speed at the exobase required to fit the east-west intensity asymmetry is double-

valued, having a lower value < 1 km sec -1 and a higher value in the range 2.6-3.65 km sec-1. For

a Maxwell-Boltzmann flux distribution, the lower and higher most probable speed values were

0.71 km sec -1 (T=460 K) and 3.65 km sec -I (T=12,300 K). Neither distribution was, however,

suitable for properly populating the forward cloud. The lower value produces essentially only
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ballistic atoms orbits which could not populate the forward cloud, while the higher value was

significantly larger than the nominal -2.6 km sec-1 characteristic monoenergetic velocity required to

reproduce the proper spatial morphology of the forward cloud as a function of the Io geocentric,

phase angle. For a Maxwell-Boltzmann flux distribution with a nominal thermal exobase

temperatures in the range -1000-2000 K, the calculated east-west intensity ratio was much higher

than the observed value with the atoms still contributing primarily to the corona density and again

far too deficient in energy to contribute any significant sodium to the forward cloud. For the

preferred (o:=7/3) modified-sputtering distribution of Smyth and Combi (1988b) with a source

strength of -2 x 1026 atoms/s, the lower and higher speed values were <0.5 km sec -1 and -2.9 km

sec -1, respectively, with the latter value being preferred because of its closer proximity to the -2.6

km sec-1 characteristic velocity for the forward cloud. Interestingly, however, it is actually the

lower value that will be shown in this paper to reproduce the correct spatial profile for sodium both

within the Lagrange sphere and beyond in the more distant neutral cloud.

2.2 Corona: Column Density Profile

In Table 1, modeling studies of Smyth and Combi (1987b,c) determined that typical

forward cloud brightness data for the sodium cloud could be properly simulated well beyond the

Lagrange sphere radius of -5.81 Rio by an sodium source of-1 x 1026 atoms/s ejected

monoenergetically from Io's exobase with a characteristic velocity of -2.6 km sec-l. They also

established that this same sodium source reproduced the column density profile of Schneider et al.

(1987) within the Lagrange sphere down to a radius of-3.5 Rio. For a radius smaller than -3.5

Rio, the calculated profile was lower than the observed profile, indicating that lower (ballistic and

escape) velocity components are required, in addition, as part of a more realistic flux velocity

dispersion. A similar behavior for the simulated column density profile, with an even more

dramatic departure from the observed profile both inside and outside the Lagrange sphere, was also

later shown by a model calculation of Ip (1990) who assumed an exobase speed of 3 km sec-1 but

did not include the gravity of Jupiter so as to properly include the near zero escape speed
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conditionsfor sodiumat theLagrangesphere. Adopting for the sodiumatomsat theexobasea

simple (i.e., binding-energyvelocity Vb= 0) classicalsputteringenergydistribution with a low

energycut-off andalsoexcludingJupiter'sgravity, McGrath(1988)modeledthecolumndensity

within the Lagrangesphereand produceda profile with a slope slightly lesssteepthan the

observationfor aninfinite sodiumlifetimeandaslopesomewhatsteeperthantheobservationfor a

sodiumlifetime of 3 hr. Alternativelyadoptinga Maxwell-Boltzmannflux distribution,assuming

aninfinite sodiumlifetime, andsimilarly alsoexcludingJupiter'sgravity, Summerset al. (1989)

and Schneider et aI. (1991) modeled the column density within the Lagrange sphere region and

produced a profile that reasonably well matched the observed profile for an exobase temperature,

respectively, of 1000 K based on the partial eclipse data set (Schneider et al. 1987) and of 1500 K

based on the complete eclipse data set (Schneider et al. 1991). Although these different flux

velocity distributions reasonably fit the observations within the Lagrange sphere, it is clear from

the earlier studies of Smyth and Combi (1988b) that the Maxwell-Boltzmann distributions are

energetically deficient and inappropriate for populating the neutral cloud and that the more

energetically promising sputtering distribution cannot be investigated adequately near or beyond the

Lagrange sphere radius without properly including the gravity of Jupiter, solar radiation

acceleration, and the spacetime variable lifetime of sodium in the plasma toms. The study will be

undertaken in section 4.

2.3. Sodium Cloud

The early studies in Table 1 for the sodium cloud were general in nature, probing its poorly

documented spatial and angular extent about the planet. Based upon the solar resonance scattering

excitation mechanism for sodium (Bergstralh et al. 1975) and limited angular extent data

determined by slit-averaged intensity data, Carlson et al. (1975) undertook monoenergetic (3.5 km

sec -l) model calculations and estimated that the sodium cloud lifetime (assumed to be spatially

uniform) was likely determined by electron impact ionization by the (then very poorly

characterized) plasma in planetary magnetosphere. This general picture for the cloud was
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confirmed by more extensive model calculations performed by Fang et al. (1976) and Smyth and

McElroy (1977), the latter of which explored the time evolution and two-dimensional nature of the

cloud for exobase velocities near the Io Lagrange escape speed. The acquisition of sodium cloud,

images in late 1976 and early 1977 brought this subject into dramatic focus. For a classical

sputtering flux distribution that peaked at 4 km sec -1, Matson et al. (1978) successfully modeled al

one-dimensional east-west brightness profile (derived from a cloud image), which extended from

Io in the forward cloud tO -80 Rio and in the trailing cloud to -40 Rio but which excluded sodium

emission within Io's corona. The analysis (Smyth and McElroy 1978) of the much larger sodium

cloud image data set (Murcray 1978) also indicated that the forward cloud could be characterized

by an exobase ejection speed of -2.6 km sec -1 and that its changing intensity pattern could be

understood as the changing viewing perspective of an approximately steady state cloud on the sky

plane as Io moved on its orbit around Jupiter. The observed predominance of the forward sodium

cloud over the trailing cloud was accomplished in all these models by limiting the exobase source

area to a hemisphere (see Table 1) and by limiting the assumed spatially uniform lifetime so as to

dynamically select sodium atom orbits that would primarily populate the forward cloud. Additional

modeling studies by Macy and Trafton (1980) of the radial and vertical cloud structure on a larger

spatial scales indicated source dispersion speeds at least up to 13 km sec -1 were, however, required

to explain a variety of other observations. Additional model studies (Smyth 1979, 1983) showed

that the troublesome east-west orbital asymmetry of the sodium cloud (Goldberg et al. 1978) was

not source related but due to the perturbing action of solar radiation acceleration on the sodium

atom orbits. Adopting a one-dimensional radially dependent sodium lifetime in the plasma torus

based upon limited Voyager spacecraft data and an asymmetric exobase source for a classical

sputtering distribution with a peak velocity at 4 km sec -1, Goldberg et al. (1980) successfully

modeled another one-dimensional east-west brightness profile acquired during the Voyager 1

encounter for distances extending from Io in the forward cloud to -80 Rio and in the trailing cloud

to -30 Rio. Later modeling by Smyth and Combi (1988) using a more accurate two-dimensional
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spacetime-dependentsodium lifetime in the plasmatorus and an isotropic (or near isotropic)

exobasesodiumsourceof-2 x 1026 atoms sec -l demonstrated that the predominant forward cloud

was caused by the highly radially-dependent sink for sodium in the plasma toms and not by a

nonisotropic source. The deduced characteristic or peak exobase speed for the more definitive

modeling of the forward sodium cloud above is, therefore, in the range -2.6 to 4 km sec -1 and is

much larger than required to characterize the sodium column density profile in Io's corona. A

different flux speed distribution is therefore needed for consistency and is addressed in section 4.

2.4 Directional Feature

In Table 1, observations acquired in 1980 and 1981 by Pilcher et al. (1984) for weaker D-

line emissions in the trailing portion of the sodium cloud allowed them to discover an elongated

feature in the brightness distribution that on the sky plane was directed away from Jupiter and was

inclined sometimes to the north and sometimes to the south of the satellite's orbital plane. The

north/south direction of the feature was shown to be correlated with Io's magnetic longitude and

suggested a formation mechanism involving the oscillating plasma toms. Modeling analysis by

Pilcher et al. indicated that the feature resulted from a high-velocity (-20 km sec -1) sodium source

that was at near right angles to Io's orbital motion with a source strength required on the outer

satellite hemisphere of -1 x 1026 atoms sec -1. This peculiar directionality of the source was

investigated by Sieveka and Johnson (1984) who concluded that it was produced by direct

coUisional ejection of neutral sodium from the exosphere by the corotating plasma flow past Io, as

exhibited in their discussion of interaction potentials for these collisional processes. More recent

modeling by Smyth and Combi (1991) of the sodium zenocorona showed that it required a two

component exobase source: a similar high-velocity (~20 km sec-l) sodium source of- 1 x 1026

atoms sec-1 for the spatial distribution nearer the planet and an even higher-velocity (-57 km sec -1)

sodium source of -2 x 1026 atoms sec -I for the spatial distribution further from the planet. Both

source components, however, were based on ion-neutral charge exchange processes in Io's

exosphere and were therefore composed of a speed tangential to Io's orbit at Io's position plus an
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isotropicMaxwell-Boltzmanndistributionwith a mostprobablespeedof aboutone-thirdof the

tangentialspeedin theJupiterframe(i.e., one-thirdof-37 and-74 km sec-1,respectively).The

lower componentis thereforesymbolicallydenotedin theIo frameby 20-Z_12km sec-1in Table1.0

Very recently,successfulmodelingof thedirectionalfeatureshasalsobeenreportedby Wilsonand

Schneider(1995)who haveusedasimilar lowercomponentsourcedenotedinTable 1by 20+10-'

20km sec-1,wheretheisotropicportionof their sourcemaybevariablein magnitude.

3. OBSERVATIONAL DATA BASE FOR MODELING

To describetheentiresodiumspatialdistributionin Io's coronaandbeyondin theextended

neutralclouds,threedifferent sodiumobservationsobtainedonvery different spatialscalesareto

be combined. For the sodium spatial distribution within Io's corona andbeyond in the near

extended cloud, we have selectedthe ground-basedobservationsobtained at the Catalina

Observatory 1.5 meter telescopeusing the LPL echelle spectrographby Schneider(1988;

Schneideret al. 1987, 1991) in 1985 when the Galilean satellites of Jupiter underwent mutual

eclipse. As reported in Schneider et al. (1991), two different types of observations were acquired,

eclipse observations and emission observations, and were interleaved over six nights in the late

summer and early fall. The dates, times, orbital angular parameters of Io, spectral ID numbers,

and the numbering of these observations as adopted in this paper are summarized in Table 2. The

eclipse observations provided for the first time accurate information about the density gradient of

atomic sodium in the corona within the Lagrange sphere of Io ( i.e., a radius of 5.81 Rio) for the

radial interval from -1.4 to 6 Rio. The emission observations acquired along an east-west aligned

slit centered on Io yielded the most accurate spatial information from the Lagrange sphere outward

into the nearer portion (i.e., -6-40 Rio from Io's center) of the sodium cloud. To describe sodium

in the neutral cloud at larger distances from Io, we have selected a number of sodium cloud image

observations acquired between 1976 and 1983 for Io in the vicinity of its orbital elongation points.

As illustrated in Figure 1, these sodium cloud images were used to extract east-west D2 brightness
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profiles that overlapthespatialrangeof theemissiondataandextendit to +100 Rio. The closer

spatial regions of the eclipse data and the near Io emission data are, however, masked in the cloud
,0

images by a circular (or nearly circular) occulting mask of-10 Rio in radius centered on Io. A

description of the eclipse, emission, and image cloud observations relevant to establishing the

composite observational base for our modeling analysis is given below.

3.1 Eclipse Observations

Eclipse observations measured the absorption feature at the D-line wavelengths as seen

from Earth in the spectra of the reflected sunlight from the disk of another Galilean satellite (either

Europa or Ganymede for measurements of interest here) that was produced by sodium in Io's

atmosphere as Io eclipsed the sun from the viewpoint of the other Galilean satellite. Since the

equivalent width of each absorption profile can be directly converted to a column abundance of

sodium along the optical path, successive measurements during one solar eclipse of either Europa

or Ganymede by Io were used to produce a spatial profile of the column density near Io. Of

particular interest in this paper are the five higher quality eclipse profiles of Schneider et al. (1991)

listed in Table 2. Four of the five eclipse profiles were acquired when Io was east of Jupiter (i.e.,

an Io geocentric phase angle within 90 + 90 degrees), and only one was acquired when Io was

west of Jupiter (i.e., within 270 + 90 degrees).

The column density profiles for all five of the eclipse observations are presented

collectively in Figure 2 and follow directly from the information given by Schneider et al. (1991)

in their Table 3. Only one lower-bound data point from eclipse 4 at a distance from the center of Io

of 1.17 Rio is excluded since it is well within the nominal exobase radius of 1.4. Rio. The spatial

profile for eclipse 2 obtained on September 14 when Io was very near eastern elongation is

highlighted by the filled circles in Figure 2 and seen to be similar to the other four spatial profiles.

For the five profiles, the error bars for the eclipse 2 data points are the smallest, being no larger

than the size of the filled circles Within the Lagrarige radius and no more than about a factor of two

larger outside this distance. A comparison of the two sides of each eclipse measurement shows no
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detectabledifferencein theslopesof their separateprofileswithin theLagrangesphereradiusof Io,

thuseffectively reducesall the eclipsedata to one radially symmetricprofile. This symmetric

profilededucedby Schneideret al. is shown by the dashed line in Figure 2 and has the power law

fit N (1.4 < r _<5.85) = 2.55x1012 r -2.48 for the data points within the Lagrange radius, where N is

the column density in units of atoms cm -2 and r is the distance from the Io's center in units of the

Rio. This power law fit undercuts the data points outside the Lagrange radius where the eclipse

observations are less reliable. Although the eclipse data_beyond the Lagrange sphere contain more

vertical scatter, they appear to suggest that the sodium profile may have a reduced slope near this

boundary, as will be verified by the emission observations. This slope change will be seen to be

caused by the dominant planetary gravitational field beyond the Lagrange radius of Io.

3.2 Emission Observations

Emission observations measured the solar resonance scattered D-line intensity emitted by

sodium atoms in the near cloud environment of Io. In addition to spectral information, which is

only briefly considered in this paper, these observations provide a one-dimensional spatial profile

for the D-line emission brightnesses along a slit that is oriented east-west (i.e., perpendicular to the

spin axis of Jupiter) and that is centered on Io and contains (or very nearly contains) its disk. Of

interest in this paper are nine higher quality emission observations listed in Table 2, for which

seven were obtained when Io was east of Jupiter and only two when Io was west of Jupiter.

The D 2 brightne, ss profiles for the nine emission observations, where each observation has

both an east and west profile relative to Io's location, are all shown in Figure 3. This information,

previously published only in a graphical format (Schneider et al. 1991), is summarized

numerically in Table 3 as provided by Schneider (1990, 1995 private communication). The

nonuniform spatial coverage in Table 3 occurs because of different distance intervals adopted to

obtain good average brightness values (given different signal to noise ratios) and because of signal

drop-out associated with constraints imposed on positioning the slit profile on the CCD detector

during interleaved eclipse and emission measurements. In Figure 3, the spatial profile for emission
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4, obtainedon September14whenIo wasnearesteasternelongation,is highlighted,with its east

profile (filled diamond)andwest profile (opendiamond)shownseparately.Excluding all data

pointsinsideof 4 Rio wherethe seeingandinstrumentaleffectsartificially flattentheprofile, the

power law fit is ID2(r_>4) =101r -'4s for the remainingemissionbrightnessdata in Figure 3,

where ID2is theD2brightnessin kiloRayleighs(kR) and r is thedistancefrom thecenterof Io in

Rio units. The D2brightnessof-100 kR as r approachesIo's surfaceis consistent(seeBrown

andYung 1976)with themaximumsodiumcolumndensityof-1 x 1012 atoms cm -2 deduced from

the eclipse data in Figure 2. Again excluding emission data inside of 4 Rio, brightnesses for the

different profiles in Figure 3 vary by a factor of -3 to almost 5 at the same distance from Io but

have error bars given in Table 3 that are as small as +10% for the larger brightness values and no

larger than +30% for the smallest brightness values. The brightness error bars for the September

14 data points in Figure 3, for example, are vertically smaller than the diamond symbols at 4 Rio,

comparable to the diamond symbols at 10 Rio, and about a factor of two taller than the diamond

symbols at 35 Rio. This suggests that the large variation in the emission brightness in Figure 3 is

real and likely correlated with the Io geocentric phase angle, the Io System III longitude, and the

east-west asymmetry of the plasma toms as has been observed to be the case for the spatially more

extensive sodium cloud image data. These correlations will indeed be shown to be the case when

the sodium cloud image observations are presented and are compared to the emission data.

3.3 Sodium Cloud Image Data

A large number of sodium cloud images in the D1 and D 2 emission lines were acquired in

the 1975-1984 time interval (Murcray 1978; Murcray and Goody 1978; Matson et al. 1978;

Goldberg et al. 1980, 1984; Morgan 1984, private communication) with emission brightnesses

measured about Io to distances of 100 Rio and larger, as illustrated in Figure 1. In these images,

Io was centered behind an occulting mask typically 10 to 12 arc sec across (i.e., covering a radial

distance from the center of Io of about 10 Rio) in order to block the bright disk-reflected sunlight

15



from the satellite'ssurface. The sodiumbrightnessdistribution in the immediatevicinity of the '

maskwasusuallyspatiallydistortedin theresultingimagebut wasconsistentlymeasuredto bea

few kiloRayleighs (kR), similar to the brightnessesof the emissiondataat 10Rio in Figure 3.

Beyondtheimmediatevicinity of themask,thestructureof thesodiumcloudemissionbrightness

on thesky planehasbeenhistorically dividedinto a forward cloud, so-calledbecauseit appearg

aheadof the satellite in its orbit [i.e., in Figure 1 locatedright (west) of Io in imageA andleft

(east)of Io in imagesB andC], andacorrespondingtrailing cloudthatappearsbehindthesatellite.

The changeof the spatial brightnessmorphology of the forward sodiumcloud with Io

geocentricphaseangle is well known (Murcray 1978;Murcray and Goody 1978;Smyth and

McElroy 1978;Goldberget al. 1984). As illustrated in Figure 1, the forward cloud changes its

east-west orientation relative to the satellite's location as Io moves about Jupiter. This change in

orientation is due primarily to the projection upon the two-dimensional sky plane of a three-

dimensional cloud that is tilted inside of the tangent line to Io's orbit at the satellite's location by

about 35 degrees (Smyth and McElroy 1978). When Io is east of Jupiter (i.e., left of Jupiter) and

has a phase angle less than about 65 degrees, the forward sodium cloud is therefore observed to

the east of Io. When Io is east of Jupiter and has phase angle between about 65 and 85 to 90

degrees (i.e., at its east symmetric turning point), the forward sodium cloud is swinging through

and approximately aligned along the observer's line of sight, and the east and west profiles about

Io are fairly symmetric. When Io is east of Jupiter and has a phase angle greater than about 85 to

90 degrees, the forward sodium cloud is observed to the west of Io as shown in Image A of Figure

i. Similarly when Io is west of Jupiter and has a phase angle less than about 235 degrees (its west

symmetric turning point), the forward sodium cloud is observed to west of Io, and when the phase

angle is greater than about 235 degrees, the forward sodium cloud is observed to east of Io, as

shown in image B and C of Figure 1. The lack of mirror symmetry in the Io phase angles for the
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eastand west symmetric turning points is related to the perturbing action of solar radiation

accelerationon thesodiumatomtrajectories(Smyth 1979,1983).

In thetrailingcloud,thetime-dependentchangein thenorth-southinclinationof thefainter

directional featureis well known (Pilcheret al. 1984; Goldberg et al. 1984; Goldberg and Smyth

1996). The directional feature is north in image A (Io System III longitude of 247 degrees), south

in image B (Io System III longitude of 104 degrees), and a slightly north but near the null east-

west location in image C (Io System III longitude of 178 degrees). The north-south inclination of

the directional feature was shown by Pilcher et al. (1984) to be correlated with the System III

longitude of Io. The directional feature changes from a south to north inclination (a first null point)

at an Io System III longitude near 165 degrees and change from north to south inclination (a

second null point) for a second rather poorly defined Io System III longitude somewhere between

about 320 and 25 degrees. When the directional feature is near the null location in Figure 1, an

increase in both the spatial extension and brightening of the trailing cloud along the east-west

oriented (dashed) line is readily apparent. In addition, since the trailing cloud is associated with a

high-speed sodium source (-15-20 km sec-1), an increase in the Doppler width of the spectral line

for the trailing cloud brightness along an east-west slit through Io is also expected near the null

location, as will be seen to be the case for the emission data of Schneider et al. (1991).

To develop a suitable observational data base for our modeling purposes with the same

spatial format as for the 1985 east-west emission profiles of Schneider et al. (1991), we have

extracted one-dimensional east-west D 2 brightness profiles through Io from selected sodium cloud

images and have thereby extended the spatial range of the observed emission data coverage to +

100 Rio from the satellite. For the D 2 images of Murcray (1978), analysis by Smyth and McElroy

(1978 see their Fig. 4) indicated that when Io was near eastern elongation the one kR brightness

level in the forward cloud along an east-west line through the satellite occurred on the sky plane

about 60 Rio ahead of Io. Examination of a number of additional images indicates that the

observed brightness of the forward cloud at this distance appears many times to be lower, although
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generallyit hasbeendifficult to beprecisebecausethecloudimagesareusuallynot measuredto

br-ightnesseslessthanabout0.2 to 0.5kR. Usingfourteenimagesof thesodiumcloudfor Io near

its orbital elongationpointsthat aresummarizedin Table4, arange(or a boundingenvelope)of

values for the east-westD2 brightnessprofile of the forward and trailing clouds has been

determinedandis shownin Figure4 by thedifferentshadedareas.Theshadedareasaretherefore'

appropriateboundsfor thebrightnessprofileswhenIo is somewhatneartheelongationpoint of its

orbit. Theforward andtrailing cloudorientationdepictedin Figure4 ischosenfor Io neareastern

elongationin orderto facilitate its later comparisonwith the 1985emissiondataprofiles,mostly

acquiredfor Io eastof Jupiter.For thetrailingcloudprofile in Figure4, two differentshadedareas

havebeenextractedfrom the sodiumcloudimageinformation in Table4 to quantifyits D2east-

westbrightnessprofile. Thetwo areasarefor thetwo basicorientationsof thedirectionalfeature:

(1) lower area,when thedirectionalfeatureis inclined eithernorth or southand(2) upperarea,

whenthedirectionalfeatureis atthenull ornearnull location. As expected,theshadedareafor the

directional featurenearthenull locationis bothbrighterandlesssteepthantheshadedareafor the

directional featurewith eitherasignificantnorthor southinclination. At largerdistancesfrom Io

(>30Rio), notethatbothshadedD2brightnessareasfor thetrailingsodiumcloudarealsodimmer

andmorecloselyconfinedto Io thantheshadedbrightnessareafor theforwardcloud.

3.4 Comparisonof theEmissionDataandtheSodiumCloudImageData

InformationcharacterizingtheforwardandtrailingD2brightnessprofilesfor thenine1985

emissionprofiles is summarizedin thelastsevencolumnsof Table2 andprovidesasimplebasis

for their inner-comparisonandalsotheir comparisonwith theknowncharacteristicsof thesodium

cloud image observations.The first of thesesevencolumnsindicateswhetherthe forward or

trailingcloudprofile is dominant(i.e.,brighteratlargerdistances),thesecondcolumnindicatesthe

north,null, or southinclinationof thedirectionalfeatureasdeterminedby theSystemIII longitude

angleof Io, andthethird columnindicatesif thereis anenhancedDoppler signatureobservedin

the line profile of the forwardor trailing D2 brightnessprofile. The last four of thesecolumns
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provide the values of the exponent, [3, and amplitude, A, for the power-law fit

[ ID2(r > 4) = A r _ ] to the D 2 brightness profiles located east and west of Io. These fits omit data

points inside 4 Rio of Io's center where the emission data are artificially flattened. This

information in Table 2 is discussed below and used to show that the east-west sodium brightness

profiles from the emission data are quite consistent with the I. sodium cloud image data.

As expected from the sodium cloud image observations, the forward sodium cloud is

generally more spatially extended and brighter than the trailing cloud. From the information for the

emission profiles in Table 2, this is seen to be the case for emission 1 (Io phase angle 61.4 °)

acquired just before the east symmetric turning point and also for the three observations for

emission 7 (Io phase angle 117.2°), emission 8 (Io phase angle 121.6 °) and emission 9 (Io phase

angle 143.1 o), acquired well after the east symmetric turning point. For emission 2 (Io phase angle

72.2°), acquired during the east symmetric turning point, the forward an trailing profiles are

similar, as expected. The reverse behavior is, however, exhibited (i.e., the trailing profile is

brighter than the forward cloud) for emission 3 (Io phase angle 276.6°), emission 4 (Io phase

angle 87.7°), and emission 6 (Io phase angle 294.7"). For all three of these observations, it should

be noted in Table 2 that the directional feature in the trailing cloud is at or near the null location and,

in addition, that higher-speed sodium is detected in the line profile by an enhanced full width half

maximum (FWHM) in the trailing cloud profile but not in the forward cloud. For these three

observations, the directional feature at the null location therefore provides an explanation for both

the enhanced trailing brightness profile and the enhanced FWHM of the line profile in the trailing

cloud. It should be noted that emission 5 (Io phase angle 100.6°), which was acquired only about

1.5 hours after emission 4 (i.e., 42.4" later in I. System III longitude), exhibits no enhancement in

the FWHM of the line profile in the trailing cloud as might be expected since the directional feature

would then be inclined somewhat to the south. Interestingly, emission 9 (Io phase angle 143.1 °)

which exhibits the normal behavior of a more dominant forward cloud also has a directional feature
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atthenull conditionbutdoesnot exhibitanyFWHM enhancementin the lineprofile of the trailing

cloud. This may perhaps be caused by the large departure (i.e., 53.1 o) of the satellite from eastern

elongation where projection effects on the sky plane and the reduction in the solar resonance

scattering intensity due to the smaller sunward velocities of the sodium atoms may play a role.

An additional comparison for nearly mirror image observations of the sodium cloud on thel

sky plane can be made using Table 3 for emission 7 (Io phase angle 117.2 °) and emission 6 (Io

phase angle 294.7°). The brightness of the forward cloud at a distance of 10-16 Rio can be seen to

be larger for Io east of Jupiter, which is consistent with the well known east-west intensity

asymmetry first discovered near Io by Bergstralh et al. (1975, 1977) and more recently identified at

larger distances from Io by Goldberg and Smyth (1996). This intensity asymmetry is caused by an

east-west asymmetry in the plasma toms properties. A similar mirror image comparison between

emission 4 (Io phase angle 87.7 °) and emission 3 (Io phase angle 276.6 °) is not considered due to

the questions of an absolute calibration for emission 3 (Schneider 1990, private communication).

For the power-law fit analysis of the nine emission observations in Table 3, the spatially-

projected locations of the forward cloud (F), the symmetric turning point (S) of the cloud, and the

trailing cloud (T) are identified for the east and west profiles. The power law slopes of all the

forward clouds are similar and have an exponent value of -1.6. The power law slopes of the

trailing clouds after the symmetric turning point, but excluding the September 14 emission 5

observation (Io phase angle 100.6 °) acquired 1.5 hours after the null condition, are also similar and

have a steeper slope with an exponent value of -2.0. The power law slopes of the clouds at the

symmetric turning point, excluding the September 14 emission 4 observation (Io phase angle

87.7 °) at the null condition, are similar and have an exponent value of ~1.8. The two power law

slopes of the trailing clouds on September 14 (emission 4 and 5) do not follow the pattern and have

smaller exponent values of -1.23 and 1.27. The less steep behavior of these trailing profiles is due

to the enhancement of the directional feature at the null condition (emission 4) and to its fading

presence 1.5 hours later (emission 5). Not including the two emission observations on August 27
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for Io eastof Jupiter,which areat or near the symmetric turningpoint andhavethereverseeast-

westprojectedorientationof their forward andtrailing clouds,theremainingfive profiles for Io

eastof Jupiterarepresentedgraphicallyin Figure3 alongwith their powerlaw fits inTable2.

For the forward cloud in Figure 3, the emission brightnessprofiles are fairly tightly

confinedandcanbeseento havea slightly lesssteepslopethan the shadedareaasdetermined

from thesodiumcloudimages.Thelower boundaryof theshadedareaintersectstheemissiondata

profilesjust insideof 10Rio,which is neartheLagrangeradiusof Io wheretheslopeof theeclipse

datain Figure2 appearsto becomelesssteep.For Io neartheelongationpoint,only two emission

profiles occurandaretoo short to overlap the sodiumcloud imagearea,with theonefor an Io

phaseangleof 87.7degreesextendingonly to a westdistanceof-10 Rio andtheotherfor an Io

phaseangleof 100.6degreescontainingonly one point at a west distanceof -15 Rio. For Io

somewhatbeyondeasternelongation,theremainingthreeemissiondataprofiles(i.e.,for Io phase

anglesof 117.2,121.6,and 143.1degrees)extendto -30 Rio andfall slightly below the sodium

cloudimageprofile area,whichis morerepresentativeof conditionsnearelongation.

For the trailing cloud in Figure 3, theemissiondataprofiles havesignificantly different

slopesandcompletelyoverlapthetwo shadedareasasdeterminedfrom thesodiumcloudimage

data. The brightestandleaststeepof theseprofiles is for the emission4 (Io phaseangle87.7°)

which hasa power law fit that is along thetop boundaryof the upperareafor thesodiumcloud

imagedata. This trailingcloudemissionprofile wasacquiredfor thedirectionalfeatureat thenull

condition andexhibiteda muchlargerFWHM valuein thetrailing cloud line profile for thedata

points at theselargerdistancesfrom Io. The nextbrightestprofile is for theemission5 (Io phase

angle 100.6°) which was acquired-1.5 hours later on the sameday and doesnot show an

asymmetryin theFWHM value. This trailing cloud emissionprofile hasapower law fit thatis

essentiallyalongthetopboundaryof thelowerareafor sodiumcloudimagedata(correspondingto

inclined directionalfeatures)andsuggestthatthefadingpresenceof thedirectionalfeatureis still

present.Theremainingthreetrailing emissionprofiles (i.e., Io phaseanglesof 117.2,121.6,and
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143.1°) are for Io somewhatbeyondeasternelongationand lie nearor just below the bottom'

boundaryof the lower areafor sodiumcloud images. These threeprofiles are rather tightly

confinedandhaveaverysimilarslope(exponent-2) asnotedearlier.

4. ANALYSIS OF THE OBSERVATIONS

Modeling analysisof the one-dimensionalsodiumdistribution describedin thepreviou+

sectionwill now beundertaken.Collectively,theeclipsemeasurementsfor thecoronanearIo, the

emissionmeasurementsthat extend into the near sodium cloud, and the sodium cloud image

derived profiles that reach to distances of +100 Rio, provide a set of spatially overlapping

observations that will be used to study and constrain the initial velocity dispersion of the sodium

source atoms at the exobase. In the modeling analysis, one-dimensional profiles are calculated

using the numerical sodium cloud model of Smyth and Combi (1988a,b), where the electron

impact ionization sink for sodium is determined for a 7 degree tilted corotating plasma torus with

an offset-dipole planetary magnetic field in the presence of a nominal (i.e., -2.8 mV m -1 in Io's

frame) east-west electric field. A System III longitudinal asymmetry, although present in the toms

ion emission, is not included but deferred to a later time when the electron dependence is available.

To investigate the nature of the initial velocity dispersion of the sodium source, two

different source flux speed distributions discussed earlier by Smyth and Combi (1988bi see their

Appendix D) are considered: (1) a Maxwell-Boltzmann flux distribution and (2) a modified-

sputtering flux distribution. The Maxwell-Boltzmann flux distribution _b(v;T) is based on the

Maxwell-Boltzmann velocity distribution and is defined as follows:

_b(v;T) = _o (_-_) 2 _2 (--__v)3e-(_, 2
E VT VT

(1)

where v T = _ is the most probable speed of the velocity distribution for an atom of mass

m. The Maxwell-Boltzman n flux distribution is proportional to the local velocity integrated flux _b0
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referencedhereto the satellite radius Rs not the exobaseradius RE and depends Upon One

parameter, the exobase temperature T (or alternatively vT ), which determines both the most

probable speed v m = 3k_ of the flux distribution and the speed dispersion of the flux

distribution. The modified-sputtering flux distribution (b(v;c_,v_,vb) is proportional to the local

velocity integrated flux _0 and depends upon three parameters: an exponent o_, a velocity parameter

v b, and the velocity parameter v M:

, (__v)3( 2vb )_ 1_(_),/22

VbD(O_,VM/Vb) V b V q" V b L VM J (2)

where D(o_, VM/Vb) is a normalization constant (see Smyth and Combi 1988b). The exponent o¢

primarily determines the dispersion of the distribution, which has a greater high-speed population

as c_ decreases. The exponent c_ has a value of 3 for a classical sputtering distribution (i.e., a

complete collisional cascade process) and a value of 7/3 for a Thomas-Fermi modified-sputtering

flux distribution (i.e., the limit of a single elastic collisional ejection process), where the latter

distribution is based upon a Thomas-Fermi differential scattering cross section. The velocity

parameter Vb is related nonlinearly to the most probable speed v m of the flux speed distribution and

primarily determines v m (see Smyth and Combi 1988b, Appendix D). The velocity parameter v M

primarily determines the maximum speed for the flux distribution and depends upon the maximum

relative speed (and masses) of the plasma toms ion and sodium atom. For different values of their

parameters, two Maxwell-Boltzmann flux distributions and three modified-sputtering flux

distributions are shown in Figure 5 and will be utilized in the subsequent modeling analysis.

In calculating the column density and the D2 emission brightness in the numerical sodium

cloud model, a smaller two-dimensional sky-plane grid centered on Io (+15 Rio) is used tO cover a

spatial scale near the satellite more appropriate to the eclipse data while amuCh larger two-
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dimensional sky-plane grid centered on Io is used to cover a larger spatial scale more appropriate'

for the emission data and the sodium cloud image data. A one-dimensional profile for the eclipse

data is obtained from the smaller two-dimensional sky-plane grid by extracting an average radial

profile. This average radial profile will be called the calculated eclipse profile and will be denoted

by the filled circles in Figures 6-9. A one-dimensional east-west D2 brightness profile (and also a

corresponding column density profile) for the emission data and the sodium cloud image data is

obtained from the larger two-dimensional sky-plane grid by selecting only the east-west grid

elements that occur in the grid row containing Io. In Figures 6-9, the calculated east-west

brightness and column density profiles are denoted by filled triangles for the forward cloud profile

and by filled squares for the trailing cloud profile. To construct an eclipse or east-west profile,

monoenergetic model calculations are performed for 18 different nonuniformly-spaced speeds

ranging from 0.4 km sec-1 to 10 km sec-1. Profiles for speeds beyond 10 km sec-1 are determined

by an inverse speed extrapolation of the model results. The individual profiles for the different

speeds are appropriately weighted for a given source flux speed distribution and then added to

obtain the final spatial profile. Model calculations are performed for an Io geocentric phase angle

of 92.9 degrees and an Io System III longitude angle of 48.6 degrees. These satellite conditions

are similar to those for the emission 4 and eclipse 2 observations of Table 2, which are the

observation closest to the eastern elongation point. This choice is also appropriate for all the

eclipse data within the Lagrange sphere, which has no discernible dependence on these two Io

related angles, and for the Io sodium cloud image data which have east-west profile areas in Figure

4 that are representative of the satellite near its orbital elongation points. Modeling analysis results

are summarized in Table 5 and discussed below.

For the first Maxwell-Boltzmann flux distribution in Figure 5 with a most probable speed

of v m = 1.3 km sec-! (i.e., an exobase temperature of-1560 K) and with a flux q_0 of 3.0 x 108

atoms cm-2 sec-1 (i.e., a total source of-1.2 x 1026 atoms sec-1), the model calculated eclipse

profile (filled circles) in Figure 6a provides an excellent fit within the Lagrange sphere to the
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eclipse observations (open circles) and also compares very favorably with the east-west column

density profiles calculated for the forward (filled triangle) and trailing cloud (filled squares). Tl_is

fit verifies and is similar to the earlier 1500 K Maxwell-Boltzmann flux distribution fit of Schneider

et a/.(1991) discussed in Section 2. Beyond the Lagrange sphere in Figure 6a, however, all three

of these calculated profiles fall below the eclipse observations, which is considered less accurate at

these distances. At and beyond about 8 Rio, the calculated east-west forward (filled triangle) and

trailing (filled squares) profiles rise above the calculated eclipse profile (filled circles) because the

column density is no longer spherically symmetric about Io, with the forward cloud profile having

the largest column density and showing a distinct change in its slope compared to the trailing cloud

profile. The corresponding model profiles for the D2 emission brightness are given in Figure 7a.

For both the forward and trailing profiles, the calculated eclipse and calculated east-west profiles

are in good agreement with each other inside the Lagrange radius, with a maximum brightness of

about 200 kR near the exobase. The calculated east-west profile threads the three emission 4 data

points for the forward cloud, but falls well below the emission 4 data points in the trailing cloud.

For both the forward and trailing clouds at larger radial distances, the calculated east-west profiles

fall well below the areas for both the forward and trailing cloud images. This behavior indicates

that there is a large deficiency in the high-speed population of this source flux speed distribution at

the exobase.

Model calculations were therefore performed for the second Maxwell-Boltzmann flux

distribution in Figure 5 with a higher most probable speed of v m = 2.0 km sec -1 (i.e., an exobase

temperature of-3690 K) and with a flux _b0 of 1.8 x 108 atoms cm-2 sec-1 (i.e., a total source of

-0.75 x ' 1026 atoms Sec -1) and are shown in Figure 6b and Figure 7b. For the D2 emission

brightness profiles in Figure 7b, the calculated east-west profile now threads the center of the

forward cloud image area for a radial distance up to about 70 Rio and the lower trailing cloud image

area for a radial distance of about 25 Rio before it falls off too steeply. This improved fit at larger

radial distances, however, reduces the D2 emission brightness at the exobase to about 80 kR in
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Figure 7b and causes the calculated eclipse profile in Figure 6b to fall below the measured eclipse

profile for radial distances inside of about 3 Rio. The Maxwell-Boltzmann flux distribution

therefore cannot fit both the corona profile near Io and the sodium cloud east-west profiles at large

distances from the satellite. A flux distribution that has a broader dispersion with enhanced

populations for both the low-speed and high-speed atoms is required. The three modified-

sputtering flux distributions in Figure 5, which have a broader dispersion, are thus considered in

the remainder of the paper with model calculations presented in Figures 8 and 9.

Model calculations for a classical sputtering flux distribution (o_=3) and a modified-

sputtering flux distribution ((x=7/3) are presented in Figure 8a and Figure 8b for the eclipse

observations and in Figure-9a and Figure 9b for the east-west D2 emission brightness profiles.

For these two flux distributions, the most probable speeds are, respectively, 1.0 km sec-t and 0.5

km sec -1, and the sodium fluxes _b0 are, respectively, 3.2 x 108 atoms cm -2 sec-1 (i.e., a total

source of -1.3 x 1026 atoms sec -1) and 4.2 x 108 atoms cm -2 sec-1 (i.e., a total source of -1.7 x

1026 atoms sec-1). From the exobase to radial distances of -8 Rio, just beyond the Lagrange

radius, both sputtering flux distributions provide a very good fit in Figures 8a and 8b to the

observed eclipse colunm density profile (open circles) and correspond to an exobase D2 emission

brightness of about 150 kR in Figures 9a and 9b. For the classical sputtering flux distribution in

Figure 9a, the calculated D2 emission brightness profile for the forward profile is slightly above the

measured data point (open circles) inside the Lagrange radius, matches the two measured data

points beyond the Lagrange radius, and then threads the forward cloud image area nicely between

about 20 Rio and 80 Rio before it falls too rapidly and drops below this area. An excellent fit for

the forward profile is, however, provided by the modified sputtering distribution (_-7/3) in Figure

9b where the calculated D2 emission brightness profile matches the measured data points (open

circles) both inside and beyond the Lagrange radius as well as nicely threading the forward cloud

image area all the way to 100 Rio. For the trailing cloud, the calculated D2 emission brightness

profile for the classical sputtering flux distribution in Figure 9a, matches the measured data point
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inside the Lagrange radius, is slightly below the two measured data points outside the Lagrange

radius, and then threads the lower of the two trailing cloud image areas nicely between about 15

Rio and 35 Rio before it falls too rapidly and drops below this area.. An excellent fit for the trailing

profile is, however, provided by the modified sputtering distribution (o:=7/3) in Figure 9b where

the calculated D2 emission brightness matches the measured data point inside the Lagrange radius,

is slightly below the two measured data points outside the Lagrange radius, and then threads the

lower (non-null) trailing cloud image area nicely all the way to 100 Rio. It is particularly

noteworthy that the isotropic ejection of sodium from the exobase with a modified sputtering flux

distribution with oc=7/3 provides an complete fit to the combined eclipse, emission, and

forward/trailing sodium cloud image profile data for this non-null condition from 1.4 to 100 Rio.

In order to fit the trailing cloud (upper area) profile for the directional feature at the null

condition, it is then clear that a flux distribution is required with an even more enhanced higher-

speed population (-20 km sec -1) than the modified sputtering flux distribution with o:-=7/3. Since

the modified sputtering flux distribution for o:=7/3 corresponds to the limit of a single collision

cascade process described by a Thomas-Fermi cross section (see Smyth and Combi 1988b),

reducing the value of o: to a smaller value becomes somewhat physically questionable but will be

used here for the purposes of simply illustrating the impact of a more enhanced higher-speed

sodium population in the model calculation. As discussed earlier, this higher-speed sodium is

thought to be a nonisotropic ejection from Io's exobase which is attributed to some combination of

direct collision ejection and lower-velocity charge exchange ejection. Choosing the modified

sputtering flux distribution with o:=2 in Figure 5 which has a most probable speed of 0.4 km sec -1

and selecting an isotropic exobase source rate of 1.9 x 1026 atoms sec -1 (i.e., a flux _b0 of 4.7 x

108 atoms cm -2 sec-! ), the model-data comparison is shown in Figure 8c for the eclipse column

density and in Figure 9c for the east-west D2 emission brightness. The sputtering flux distribution

provides a reasonably good fit to the observed column density data points in Figure 8c with only a
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smalldepartureveryneartheexobaseandproducesacolumndensityprofile beyond10Rio thatis

significantlyenhancedcomparedto the0¢=7/3casein Figure8b. In Figure9c,thisenhancementin

theforwardcloud is obviouswherethecalculatedD2 emission brightness profile is significantly,

above the measured data points both inside and outside the Lagrange radius and is above or in the

very top of the forward cloud image area all the way to 100 Rio. The additional enhanced high4

speed population of the 0¢=2 modified sputtering flux distribution is too large and therefore not

consistent with the observed forward profile. "In contrast for the trailing cloud in Figure 9c, the

calculated D2 emission brightness profile matches the measured data points inside and outside of

the Lagrange radius very well and then threads the upper of the two trailing cloud image areas

nicely all the way to -90 Rio. This demonstrates that the trailing cloud can be fitted with an

enhanced higher-speed population of sodium atoms in the flux distribution. It also immediately

demonstrates that the flux distribution at the exobase must be nonisotropic with some of the

enhanced high-speed population weighted more toward vector directions that will preferentially

populate the trailing cloud rather than the forward cloud. As discussed in section 2, this

nonisotropic requirement for a flux distribution for speeds of -20 km sec -1 is consistent with the

conclusion reached by earlier modeling analyses (Pilcher et al. 1984; Smyth and Combi 1991;

Wilson and Schneider 1995) where sodium was constrained to be initially directed at near right

angles to Io's orbital motion and hence was angularly deficient in the trailing apex direction, which

preferentially populates the forward cloud.

5. DISCUSSION AND CONCLUSIONS

The composite spatial information for sodium obtained by combining the eclipse

observations (radial distances from Io of 1.4 to -10 Rio), the emission observations (east-west

distances of +4 to +30-40 Rio) and the sodium cloud observations (east-west distances of + 10 to

+ 100 Rio) has been analyzed to extract a basic description for the flux speed distribution at the

satellite's exobase. An isotropic modified-sputtering flux speed distribution in Figure 5 with

c¢=7/3, a most probable speed of 0.5 km sec -1, and a source strength of 1.7 x 1026 atoms sec -1
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provideda verygoodfit to thesecompositeobservationswhenthedirectionalfeatureiseithernorth

or southandhencenot contributingto theeast-westprofile of thetrailing cloud. It is remarkable

that theseobservations,acquiredby a numberof ground-basedprogramsover very different

spatialscalesandat different timesduring the 1975-1985decade,aresoself consistent.NearIo,

thetwo-dimensionalsodiumcolumndensityproducedby this modifiedsputteringdistributionas

calculatedby thesodiumcloudmodelin theprofile analysisaboveis shownin Figure10andcan

be seenat larger distancesfrom Io to becomenonsphericalandmoreconfinednearthesatellite

plane. This flatteningnearthesatelliteplaneis themergingof thenearIo coronainto thesodium

cloud andis causednaturallyby orbital dynamicsbeyondthesatelliteLagrangespherewherethe

gravity of Jupiteris dominant. Theforwardcloudportion of theeast-westemissiondataprofiles

hasarathertightly confinedslopethat,in theabsenceof thetrailing cloudenhancementatthenull

condition, is lesssteepand is brighter than the trailing cloud profiles. In order, however,to

reproducetheextendedeast-westprofile in thetrailing sodiumcloudwhenthedirectionalfeatureis

in thesatelliteplane(i.e.,thenull location),additionalnonisotropichigh-speedsodiumisrequired.

Thesodiumatomsejectedfrom Io's exobaseasdescribedaboveby themodifiedsputtering

flux distribution havespeedsprimarily in therangefrom 0 to a few 10'skm sec-1. This neutral

flux distribution representsthespatially integratedeffect of the incompletecollisional cascade

processthatoccursfrom thecollisional interactionsof heavyions in the corotatingplasmatoms

with neutralsin Io's atmosphere.This flux speeddistribution canbealternativelydescribedasa

sourceratespeeddistribution by multiplying it by thesatellitesurfacearea. In additionto these

ion-neutralelasticcollisionalencounters,resonancechargeexchangebetweenplasmatomssodium

ions andneutralsodiumin Io's atmosphere(i.e.,Na + Na+ -+ Na+ + Na) is alsoresponsiblefor

producinga sodiumsourcewith higherspeedsrelativeto Io. Thesespeedsarecenteredaboutthe

corotationalion speed(-57 km sec-l)relativeto Io's motion andhaveadispersionreachingfrom

several10'skm sec-1to -100 km sec-1. Suchhigh speedsodium(<80km sec-1)hasrecentlybeen

observednear Io by Cremoneseet al. (1992). As discussed in section 2, this higher-speed
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nonisotropicsourceof sodiumtogetherwith the lower speed(-15-20 km sec-1) nonisotropic'

sourcefor the directional featureis the sourcefor the sodium zenocoronaor magneto-nebula

observedto distancesof-400-500 planetaryradii from Jupiter. Earlier modelingstudies(Smyth

andCombi 1991;Flynn et al. 1992) indicated that the higher-speed source was -2 x 1026 atoms

sec -1 while the lower speed source was -1 x 1026 atoms sec -1. More recent observations and

analysis (Flynn et al. 1994) have shown that the source strength for the higher-speed sodium

source is time variable with values usually in the range -2-4 x 1026 atoms sec -1. A typical total

source rate speed distribution for sodium at Io's exobase has hence been constructed by combining

the modified sputtering source rate distribution determined in this paper with the two source rate

distribution for the zenocorona as given by Smyth and Combi (1991). This total source rate speed

distribution function is shown in Figure 11, where the lower (solid line) and upper (dashed line)

curves correspond, respectively, to the sodium zenocorona higher-speed source rate of 2.2 x 1026

atoms sec -1 and 4 x 1026 atoms sec -I. Total source rate speed distribution functions at Io's

exobase expected for other atomic species, such as K, O, and S, can be constructed in a similar

fashion to sodium by adopting the estimated source rates given by Smyth and Combi (1991).

Future studies for the sodium flux speed distribution at Io's exobase are anticipated using a

much larger data set for east-west sodium emission observations (~ 100 profiles; Schneider 1993,

private communication) acquired in 1987 and also a data set for north-south sodium emission

observations (-140 profiles; Trafton 1995, private communication). From this much larger data

base, it will be possible to analyze the combined spatial and spectral information and to refine the

nonisotropic nature of the flux distribution and also to search for possible east-west and System III

modulations in the flux speed distribution. Once this information is determined for sodium, the

implications for the more abundant species in Io's atmosphere will be particularly important in

other related studies for the many faceted and complex phenomena in the Io-Jupiter system.
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Table 1. Summary of Modeling Studies for the Spatial Distribution of Sodium Near Io and its Orbit

Spatial Region

I. Corona

Il. Cloud

III. Dkectional Feature

Mono-eaergetie

Atom Ejection

Topic Studied Speed

(kms -1)

e-w intensity asymmetry b 2.0-2,6

e-w intensity asymmetry b 2.6

e-w intensity asymmetry b

column-density profile c 2.6

column-density profile c

column-density profile c

column-density profile c 3.0

column-density profile e

general spatial nature 3.5

general spatial nature

evolution and 2-D nature 2, 3

1-D bdghmess morphology f

2-D brighmess morphology h 2.6. 3

e-w orbital asymmetryJ 2.6

radial and vertical structure (3,5,7,9,11,13) k

I-D brightness morphology

e-w orbital asymmetry 2.6

2-D brighmess morphology 2.6

spacetime structure m -20

collision cross sections

nearer zenocorona structure

spaeetime structure

Sodium Source Sodium Lifetime Orbital Dynamics

MaxwelI-Boltzman

Hux Distribution
Cascade Hux Speed Distribution

T Vpeak _ Vb Vpeak Vmax

460; 12,300 0,71; 3.65 7/3 <0.4; 2.2 <0.5; 2.9 46,6

3 0 d

1000 1.04

1500 1.28

;000 2.3

3 4 4

3 On

~20"J: 12P

20"k 10-20q

a regarding Io's exobase, L=leading, I=inner, T=trailing, O=outer.

b east-wast intensity asymmetry data of Be,rgstralh et al. (1975, 1977).

e early (i,e,, partial) Na eclipse data set from Schneider et al. (1987).

d used cut-off energy: Emin < E < -: Emln = k Texobase; Texobase=1500 K (i.e, a 1,04 km s" I cut-off speed).

e complete eclipse data set from Schneider (1988) and Schneider et al. (1991).

f two sodium cloud images of Matson et al. (1978).

g I-L hemisphere centered 30* longitude (0" longitude facing Jupiter, 90* longitude is the leading point in the orbit).

h fifty-six sodium cloud images of Mummy (1978) and Murcray and Goody (1978).

Jupiter's Radiation

Angular Plasma Toms Lifetime lo's Mass Mass Pressure

Nature a Description (hrs) lanluded Included Included Reference

isotropic cut-nff 20 yes yes yes Smyth 1983

isotropic 2-D variable yes yes yes Smyth and Combi 1987a

band, isotropic 2-D variable yes yes yes Smyth and Combi 1988b

isotropie 2-D varialbe yes yes yes Smyth and Combi 1987b.c

isotropic cut-off 3. _ yes no no McGrath 1988

isotropic uniform _ yes no no Summers et al. 1989

isotropic uniform ? yes no no ip 1990

isotropic uniform _ yes no no Schneider et al. 1991

isotropic uniform 30. 47 yes yes no Carlson et at. 1975

isotroplc long-lived limit no yes no Fang et aI. 1976

isotropic cut-off 50 yes yes no Smyth and McElroy 1977

l-L hemisphereg uniform 28 yes yes no Matson et al. 1978

I, l-T hemisphere i cut-off 15, 20 yes yes no Smyth and McElroy 1978

I-T hemisphere i cut-off 20 yes yes yes Smyth i979

I hemisphere uniform 56 no yes no Macy and Trafton 1980

I-L hemisphere I I-D variable yes yes no Goldberg et al. 1980

l hemisphere cut-off 20 yes yes yes Smyth 1983

band, isou'opie 2-D variable yes yes yes Smyth and Combi 1988b

O, ~.1. to lo's motion 2-D variable yes yes yes Pilcher et at, 1984

~1 to Io's motion Sieveka and Johnson 1984

tangential + isotropic photoionization -40(I hr no no; Sun yes yes Smyth and Combi 1991

tangential + isotropic none _ no lees no Wilson and Schneider 1995

i I-T hemisphere centered on -40* longitude.

J east-west orbital asymmetry data of Goldberg et al. (1978).

k velocity components equally weighted.

1 distribution parameters from Carlson (1995, private communication): I-L hemisphere centered on 45 ° longitude

m from images of Pilcher el al. (1984).

n used cut-off energy of 0.5 ev (i.e., Na cut-off speed of 2.0 km s" I),

P tangential speed to lo's orbit at 1o position + most probable speed of an isotropic Maxwell-Boltzmann.

q tangential speed to lo's orbit at 1o position :t: most probable speed of an isotropic Gaussian.
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Table 2

1985 Io Eclipse and Emission Observations

UT Io Geocentric Io System III Type of Dominant
Date Midpoint Phase Angle Longitude Spectrum ID Observation Spatial

Range Range Profile
(deg) (deg) Eclipse Emission

August 27 0714 61.4 + 0.7 29.9+ 2.3 85g188 1 forward
0720 62.3 + I 1.0 32.9 + 35.8 a I ---

0830 72.2 + 1.I 65.1 _+ 3.4 85g196 2 symmetric

September 13 0641 276.6 + 0.7 194.7 + 2.3 85h032 3 trailing

September 14 0245 87.7+ 0.7 31.4+ 2.3 85h102 4 trailing
0326 93.5+ 4.2 50.5+13.7 b 2 ---

0416 100.6 + 0.4 73.6+ 1.4 85h113 5 g

September 15 0316 294.7 + 0.7 353.7+ 3.0 85h152 6 trailing
0500 309.4 + 11.5 41.7 + 37.4 c 3 ---

September 21 0604 100.5 + 1.6 112.5 + 5.2 d 4 ---

September 23 0230 117.2 + 0.7 267.6+ 2.3 85h433 7 forward
0301 121.6 + 0.4 281.9 + 1.2 85h436 8 forward
0356 129.3+ 2.0 307.3+ 6.7 e 5 ---

0534 143.1+ 0.7 352.9+ 2.3 85h457 9 forward

Directional Enhance

Feature Doppler
Orientation Signature

null trailing/forward

south no

null/north trailing

null trailing

south no

null trailing

D2 Emission Profile Power Law Fit f

Exponent Amplitude (kR)
East West East West
Profile Profile Profile Profile

1.67 (F) 1.57 (T) 191 124

1.85 (S) 1.80 (S) 169 142

1.23 (S/T) 1.80 (S/F) 89 188

1.27 (T) --- 66 ---

north no 2.05 (T) 1.57 (F) 342 135
north no 1.96 (T) 1.54 (F) 283 138

null no 2.16 (T) 1.64 (F) 374 165

a. Eclipse 1 : 85g179, 859181, 85g185, 85g188, 859192, 859193, 85g196

b. Eclipse 2 : 85h103, 85h104, 85h105, 85h106, 85h107, 85h108, 85h109, 85h110, 85h112

c. Eclipse 3 : 85h153, 85h154, 85h155, 85h157, 85h159, 85h162, 85h163

d. Eclipse 4 : 85h287, 85h288, 85h289, 85h290, 85h291, 85h292, 85h293, 85h294, 85h295

e. Eclipse 5 : 85h441, 85h442, 85h443, 85h444, 85h445, 85h446, 85h447, 85h448, 85h449, 85h450

f. Profile points inside of 4 Rio are excluded; power law fit A r-13,where A is the amplitude, 13is the exponent, and r is in units of Rio; F = forward cloud; S = symmetric turning point; T = trailing cloud.

g. Not sufficient data west oflo to compare spatial profils (see Table 3).



Table 3. 1985 Emission Data

$
West

Io

East
$

Radial
Distance
From Io

(satellite radii)

-29.92 -
-29.65
-24.48
-21.76
-16.32
-15.78
-14.96
-10.88

-9.52
-6.80
-4.08
-3.81
-2.18
-1.09
-0.82
0.00
0.27
1.09
1.36
2.18
3.26
4.08
5.98
6.80

10.06

10.88
15.50
16.32
21.76
23.66
24.48
27.20
35.36
46.24

Emission 1
61.4 °

27 August
(85g188)

3.16+0.35

5.21 + 0.54
14.65 + 1.47

24.31 + 3.40
27.46 + 3.84

27.44 + 3.84

25.87 + 3.62

25.19 + 3.53

17.60 + 1.77

8.31 5:0.84

3.40 + 0.37

D 2 Intensity (kR)

Emission 2
72.2"

27 August
(85g196)

Emission 4
87.7 °

14 September
(85h102)

4.50 + 0.47
11.29 + 1.14

18.39 + 2.57
19.99 + 2.80

19.19+2.69

19.35 + 2.71

16.87 + 2.36

11.92 + 1.20

5.52 + 0.57

1.94 + 0.25

3.17 + 0.35
6.41 + 0.66

14.71 + 1.48

24.12 + 3.38
27.14 + 3.80

27.14 5:3.80

26.65 + 3.73

25.68 5:3.60

18.10 + 1.82

8.175:0.83

3.84 _+0.41

2.84 5:0.32
2.25 + 0.27

1.39 5:0.21
1.27 + 0.20

Emission 5
100.6 °

14 September
(85hl 13)

1.91 + 0.24

23.03 + 3.22

19.60 + 2.74

11.87 5:1.20

5.52 5:0.57

3.21 + 0.35

1.81 + 0.24

1.245:0.19

Emission 7
117.2 °

23 September
(85h433)

0.69+0.17

1.19+0.19
1.38 5:0.20

2.90 + 0.33

7.49 _+0.76

25.61 5:3.59
29.95 5:4.19

27.90 5:3.91

26.31 5:3.68

22.42 5:3.14

15.54 5:1.56

7.09 5:0.72

2.47 + 0.29

1.035:0.18
0.68+0.16

Emission 8
121.6 °

23 September
(85h436)

0.93 + 0.18

3.29 +_0.36

7.76 + 0.79

25.01 + 3.50
28.72 5:4.02

30.16 + 4.22

26.39 + 3.69

23.91 5:3.35

14.83 5:1.49

7.10+0.73

2.47 5:0.29

1.11 5:0.19
0.75 + 0.17

Emission 9
143.1 °

23 September
(85h457)

0.66+0.16

0.95_+0.18

1.74 _+0.23

3.38 + 0.37

7.54 _+0.77

21.00 + 2.94
23.89 + 3.34

23.97 + 3.36

22.84 + 3.20

20.21 5:2.83

12.52 _+1.26

6.02 5:0.62

2.26 5:0.27

0.825:0.17
0.52+0.16

Emission 3*
276.6 °

13 September
(85h032)

1.40 + 0.21

2.22 + 0.27

4.40 -+0.46

11.54 _+1.16
28.69 + 2.87

45.47 + 6.37
48.61 5:6.81

45.56 5:6.38

39.45 5:5.52

33.60 + 4.70

20.06 _+2.01

7.52 + 0.77

2.73 + 0.31

1.39 + 0.20

1.06 + 0.18

1.00 -+ 0.18
0.83 5:0.17

Emission 6
294.7 °

15 September
(85h152)

1.12-+0.19

2.15 _+0.26

18.75 + 2.63

24.85 + 3.48

25.27 5:3.54

22.90 _+3.21

11.53 + 1.61

4.79 + 0.50

1.66 _+0.22

0.77 _+0.17

0.53 + 0.16

i

*calibration uncertain
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Table 4

East-West D 2 Brightness Profiles for Sodium Cloud Image Data

uT Date

Io Geocentric

Image ID Phase Angle

UTTime Number (de_)

Image Data Set Reference: Murcray (1978)

1976 Nov. 16

1977 Jan 27
0806 ES 328B 256
0024 ES 369A 86

0217 ES 370D 102

Image Data Set Reference: Goldberg and Smyth (1996)

198I May 5

May 12

May I3

June 6

0819 SIP 418/31-33 102
0848 SIP 420130-32 91

0346 SIP 421/21-23 253
0555 SIP 421/32-33 271

0436 SIP 424/I0-12 103

Image Data Set Reference: Morgan (1984)

1983 June i3 0714 i8492 274

0722 i8494 275
0729 i8496 276

0827 i8501 284
0949 i8509 296

1010 i8511 299

Io System III
Longitude

(de_)
East-West Distance from Io for Specified D2 Brightness Level (satellite radii)

0.5 kR 1.0 kR 1.5 kR 2.0 kR

Fo_ard i£r.NLag _ _ Forward _
262 .... 51 29 46 24 28

193 60 38 50 22 44 I9 32
245 >83 30 56 25 46 21 24

0.2 kR 0.5 kR 1.0 kR 2.0 kR

_ Fo_ard _ _ Trailing Forward
300 78 69 63 40-66 45 37 24
302 66 86 41 37 35 29 20

108 74-103 73 70 41 41 27 29

168 124 65 112 44 51 30 26
300 81 75 68 71 36 26 20

0.3 kR 0.6 kR 0.9 kR 1.8 kR

Ee_r_w.a_ Ztaili.o_g Fo_ard _ _ Zram_ _o_ard
230 -- 39 58 26 37 19 20

233 -- 35 52 22 40 20 20
237 >93 36 52 22 37 17 22

264 >93 39 61 25 42 19 23

301 >93 47 63 26 44 17 24
311 >93 41 63 23 44 16 19

14

16
19

21
21

2O

19
23



Table 5

SUMMARY COMPARISON OF MODELED AND OBSERVED EAST-WEST SODIUM PROFILES

FOR DIFFERENT FLUX SPEED DISTRIBUTIONS AT IO'S EXOBASE

Observations: E/W Radial Interval (Rio):

Distribution

Speed Peak
(km/s)

Corona Forward Cloud

1.4-6 6-10 10-100

Trailing Cloud (not null) Trailing Cloud (null)

6-10 10-100 6-10 10-100

Fits Fits Fits Fits Fits Fits Fits
Exobase Eclipse Near Io Far Near Io Far Near Io Far
Source Rate Column Emission Cloud Emission Cloud Emission Cloud
(1026 atoms/s) Profile Profile E/W Profile Profile EAV Profile Profile E/W Profile

1. Maxwell Boltzmann Flux Distribution

1.3 1.24

2.0 0.75

2. Collisional Cascade Flux Distribution

1.32

YES YES too low little low too low

too low YES slightly low YES little low

YES YES tiny low YES tiny low

(classical sputtering)

c_= 3 1.0

too low too low

little tow too low

little tow too low

(incomplete cascade: higher velocity tail)

c_=7/3 0.5 1.74 YES YES YES x_,E,'S YES

i

little tow
l

too loss'

a = 2 0.4 1.90 tiny low too high too high too high too high Y ES Y ES
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FIGURE CAPTIONS

FIG. 1. Io Sodium Cloud Images. Three calibrated D2 emission images of the Io sodium cloud

fiom the JPL Table Mountain Data Set are shown to proper scale with Jupiter and Io's orbit as

viewed from earth in 1981 (Smyth and Goldberg 1993). The Io System III longitude and

corresponding orientation of the trailing directional feature in image A are 247 degrees and north, in

image B are 104_ degrees and south, and in image C are 178 degrees and only very slightly north.

An east-west spatial scale of +100 planetary radii about Io is shown for reference, with tick marks

located at +50 planetary radii. Contour levels for the D2 brightness, from outside to inside, are 0.2,

0.5, 1, 2, 4, 6, 8, and 10 kR. A occulting mask of -10 Rio in radius is centered on Io so that

brightness values within this distance are not accurate.

FIG. 2. 1985 Eclipse Data. The sodium column density is shown as a function of the radial

distance from the center of Io for the five eclipse measurements acquired by Schneider et al.

(1991). The position of the nominal exobase and the average Lagrange radius are indicated. The

dashed line is a fit to the data (see text).

FIG. 3. 1985 Emission Data Profiles. The sodium D2 emission brightness in units of

kiloRayleighs is shown as a function of the east-west distance from the center of Io along the

observing slit for the nine emission observations summarized in Table 2 and acquired by Schneider

et al. (1991).

FIG. 4. East and West Brightness Profiles for Selected 1985 Emission Data and Image Cloud

Data. The spatial profiles both east and west of Io for the sodium D2 emission brightness in units

of kiloRayleighs are shown as a function of the distance along the observing slit from the center of

Io. Five emission observations identified by their satellite geocentric phase angle are shown by the
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different symbols. Thesefive profiles occurwhenIo is eastof Jupiterandjust pastthe satellite

phaseanglewhere the forward cloud hasits symmetric turning point so that the trailing cloud

profiles areall to theeastof Io andthe forwardcloud profiles areall to thewestof Io. A power

law fit to eachprofile is alsoshown. At largerdistancesfrom Io, anenvelopefor theeast-westD2

emissionprofile acquiredfrom sodiumimagedatais shownby theshadedarea.For thetrailing

profile, the shadedareais divided into two parts,wherethe lower areacorrespondsto sodium

cloud datawhenthedirectionalfeatureis orientedeithernorthor southandwheretheupperarea

correspondsto the directional feature oriented along the east-westdirection (i.e., the null

condition).

FIG. 5. Flux SpeedDistribution Functionsfor Sodiumat Io's Exobase. Maxwell-Boltzmann

flux speeddistributionsfor sodiumareshownfor amostprobablespeed,Vm,of 1.3km sec-1and

2.0 km sec-1. Modified sputteringflux speeddistributions arealsoshownfor c_=3 anda most

probablespeedof 1.0km sec-1,for o_=7/3anda mostprobablespeedof 0.5km sec-1,andfor o_

=2 anda mostprobablespeedof 0.4 km sec-1. All of theflux speeddistributionsarenormalized

to unit areaunderthecurve.

FIG. 6. Model Calculations for the Io Eclipse Data Using a Maxwell-Boltzmann Flux Speed

Distribution. Theatomicsodiumcolumndensityprofile nearIo determinedfrom the 1985eclipse

databy Schneideret aL (1991) is shown by the open circles. The model calculated column density

profiles are shown by solid dots for the (cylindrically-averaged) corona, by solid triangles for the

forward cloud along the east-west slit direction, and by solid squares for the trailing cloud along the

east-west slit direction. These column density profiles were calculated using the Io sodium cloud

model of Smyth and Combi (1988b)for their case C description of the plasma toms and for an Io

geocentric phase angle of 92.9 degrees and an Io System III longitude angle of 48.6 degrees, which

are similar to the emission 4 observation conditions in Table 2. Sodium was ejected uniformly from
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an assumed exobase of 2600 km radius with a velocity dispersion for a Maxwell-Boltzmann flux

distribution, where in (a) v m = 1.3 km sec -1 and q_0 = 3.0 x 108 atom cm -2 sec -1, and in (b) v m =

2.0 km sec -1, and q_0= 1.8 x 108 atom cm -2 sec -1 (see text).

FIG. 7. Model Calculations for the East-West D2 Brightness Profiles Using a Maxwell-Boltzmann

Flux Speed Distribution. The east-west D2 brightness profile near Io in both the trailing and

forward cloud directions as determined by the emission 4 data of Schneider et al. (1991) are shown

by the open circles. The east-west profile envelopes in both the trailing and forward cloud directions

as determined from the sodium cloud image data are shown by the shaded areas (see Fig. caption 4).

The descriptions for the calculated profile symbols, the sodium cloud model and plasma toms, and

the Maxwell-Boltzmann flux distribution in (a) and (b) are the same as in the caption of Fig. 6.

FIG. 8. Model Calculations for the Eclipse Data Using a Modified Sputtering Flux Speed

Distribution. The atomic sodium column density profile near Io determined from the 1985 eclipse

data by Schneider et aL (1991) is shown by the open circles. The model calculated column density

profiles are shown by solid dots for the (cylindrically-averaged) corona, by solid triangles for the

forward cloud along the east-west direction, and by solid squares for the trailing cloud along the

east-west direction. These column density profiles were calculated using the Io sodium cloud model

of Smyth and Combi (1988b) for their case C description of the plasma toms and for an Io

geocentric phase angle of 92.9 degrees and an Io System III longitude angle of 48.6 degrees, which

are similar to the emission 4 observation conditions in Table 2. Sodium was ejected uniformly from

an assumed exobase of 2600 km radius with a velocity dispersion for a modified sputtering flux

distribution, where in (a) ix= 3, v,, = 1.0 km sec -1, and _bo = 3.2 x 108 atom cm -2 sec-1 in (b) o_

= 7/3, v m = 0.5 km sec -1, and q}0 = 4.2 x 108 atom cm -2 sec-1, and in (c) oc = 2, v,, = 0.4 km sec-

1, and q)0 = 4.7 x 108 atom cm -2 sec -1.
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FIG. 9. Model Calculationsfor theEast-WestD2 BrightnessProfilesUsingaModified Sputtering

Flux Speed Distribution. The east-west D2 brightness profile near Io in both the trailing,and

forward cloud directions determined by the emission 4 data of Schneider et al. (199 I) are shown by

the open circles. The east-west profile envelopes determined from the sodium cloud image data are

shown by the shaded areas (see caption of Fig. 4). The descriptions for the calculated profile

symbols, the sodium cloud model and plasma torus, and the modified sputtering flux distribution in

(a), (b) and (c) are the same as in the caption of Fig. 8.

FIG. 10. Two-Dimensional Nature of the Sodium Column Density in Io's Corona. Contours for

the two-dimensional column density in Io's corona are shown in the sky-plane of the earth as

determined from the sodium cloud model calculation for the modified sputtering flux speed

distribution described in Fig. 8(b) for o_ = 7/3. The vertical and horizontal directions are the

projected directions that are, respectively, perpendicular and parallel to the semi-major axis of the

Io's orbital ellipse on the sky plane. The scale is in kilometers, and the small tick marks are

separated by 1000 km. Io's location and size are shown to scale by the black circle. The sodium

column density contours in units of 1010 atoms cm -2 are, from inside to outside, 7, 5, 3, 2, 1,

0.7, 0.5, 0.3, and 0.2.

FIG. 11. Total Source Rate Speed Distribution Function for Sodium at Io's Exobase. The total

source rate speed distribution function at Io's exobase, in units of 1026 atoms see -1 (km/sec)-l, is

composed of three separate source rate speed distributions as discussed in the text and is shown for

two different source strength for the higher-speed zenocorona source centered about 57 km sec -1.

The lower (solid line) and upper (dashed line) curves correspond, respectively, to the sodium

zenocorona higher-speed source rate of 2.2 x 1026 atoms sec -1 (Smyth and Combi 1991) and 4 x

1026 atoms sec -I. The two source rates for the higher-speed zenocorona source are shown so as to
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exhibit.its typical time-variable source strength range of-2-4 x 1026 atoms sec -1 as reported by

Flynn et al. (1994). The decomposition of the solid curve into its three separate source rate speed

distributions is shown in the cutout and is determined by combining (1) the isotropic modified

sputtering source rate distribution (dotted line in the cutout) for o_= 7/3, v,,, = 0.5 km sec- 1 and a

source strength of 1.75 x 1026 atom sec -1, (2) the nonisotropic lower-speed source rate'

distribution (short dashed line in the cutout) for the sodium zenocorona and directional feature

centered about 20 km sec -1, with a sourcestrength of 1.1 x 1026 atoms sec -1 as determined by

S myth and Combi (1991), and (3) the nonisotr0pic higher-speed source rate distribution (longer

dashed line in the cutout) for the sodium zenocorona centered about 57 km sec -1, with a charge

exchange source strength of 2.2 x 1026 atoms sec -1 as determined by Smyth and Combi (1991).
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